

© 2017 IEEE

IEEE/ACM 5th International FME Workshop on Formal Methods in Software Engineering (FormaliSE)

co-located with 39th International Conference on Software Engineering (ICSE), Buenos Aires,

Argentina, May 2017

DOI: 10.1145/1235

A Trusted and Tooled Approach to Design a Network Monitor

Benoît Boyer,
Koichi Shimizu,

Teruyoshi Yamaguchi,
Tsunato Nakai,
Takeshi Ueda,
Nobuhiro Kobayashi

Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or

lists, or reuse of any copyrighted component of this work in other works.

A Trusted and Tooled Approach to Design a Network
Monitor

Koichi Shimizu, Teruyoshi Yamaguchi,
Tsunato Nakai, Takeshi Ueda, and

Nobuhiro Kobayashi
Information Technology R&D Center,

Mitsubishi Electric Corp.
5-1-1, Ofuna, Kamakura, Kanagawa 247-8501,

Japan
Shimizu.Koichi@ea.MitsubishiElectric.co.jp

Benoît Boyer
Mitsubishi Electric R&D Centre Europe

1 allée de Beaulieu CS 10806
35708 Rennes cedex 7, France
B.Boyer@fr.merce.mee.com

ABSTRACT
Cyber security has been an issue in industrial control systems (ICS)
of critical infrastructures. Existing security measures for ordinary
enterprise systems are hardly applicable to ICS because they have
different requirements. In contrast, whitelisting network monitors
attract wide attention as a security measure for ICS that meets the
demand for availability during a long lifetime, as well as to ex-
ploit the static nature of system configuration. Once defined, the
whitelist of allowed packets can detect ever-increasing new attacks
without requiring any update. This paper presents a framework for
developing reliable and secure whitelisting network monitors for
ICS networks such as used in SCADA systems. The proposed ap-
proach relies on a model-based development combined with formal
verification and proof steps, such that the normal communication
model can be verified, the whitelist can be automatically generated
from the model and the soundness of the network monitor program
can be proven.

CCS Concepts
•Security and privacy→ Formal methods and theory of secu-
rity; Intrusion detection systems;

Keywords
SCADA; Cyber security; Network Monitoring; Whitelisting; Model-
based design; Simulink; Verification; C Code Generation

1. INTRODUCTION
Since Stuxnet [20] and Dragonfly [19], cyber security has been

an issue in industrial control systems (ICS) of critical infrastruc-
tures. There exists a wide range of security measures for enterprise
systems but they are hardly applicable to ICS because ICS have
different and incompatible requirements from enterprise systems.
For example, ICS demand availability more than data confidential-
ity or integrity, making existing countermeasures such as pattern

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

file update and patch application inappropriate. On the other hand,
the whitelisting network monitor is considered promising in ICS. It
makes a list of allowed packets called a whitelist and denies all the
rest, thereby able to detect unknown attacks. It is not suitable for
ordinary enterprise systems because the applications and network
traffic are changing all the time, making it almost impossible to de-
fine a whitelist. In contrast, ICS have basically fixed system config-
uration, which opens the door to the possibility of the whitelisting
network monitor. [15] categorizes whitelisting network monitors
into three kinds that are statistics-based, machine learning-based
and knowledge-based. Among them, the knowledge-based method
in a more restrictive sense, which is called the specification-based
method in their terms, appears to fit the context of ICS. The method
constructs a desired model that determines the legitimate system
behaviour, which will be used to detect illegitimate behavioural pat-
terns as attacks. Existing works on the specification-based method
for ICS include [9, 12, 10]. An intrusion detection approach for
Modbus/TCP is proposed in [9]. Based on the observation that
those protocols are highly periodic, the authors propose to model
the Modbus traffic as a deterministic finite automaton (DFA). Their
method can generate a model using around 100 sample packets.
Once the model is generated, the state transitions that were not
observed in the sample packets are considered abnormal, thereby
realizing whitelisting intrusion detection. In [12], this method is
extended for handling Siemens S7 which is more complex than
Modbus/TCP. One of the advantages of the methods [9, 12] is their
capability to automatically build the model with a relatively few
sample packets observed in a real network. On the other hand, if
the system specification is available and includes the normal traf-
fic definition, it is a straightforward choice to use it in order to
generate a whitelist. The method proposed in [10] is also able to
automatically generate whitelists for electric substation ICS that
are compliant with the norm IEC 61850. In that settings, the sys-
tem definition is provided as a Substation Configuration Descrip-
tion (SCD) file. However, it is not always the case that there is
a predefined system specification file that is sufficient for genera-
tion of a whitelist. This paper proposes a trusted and tooled ap-
proach to design a whitelisting network monitor adopting a model-
based development framework with Simulink the central modelling
tool. Model-based development is now widely adopted in embed-
ded control systems such as automotive equipment with Simulink
the de facto standard modelling tool and will probably be so in ICS.
Figure 1 shows the overall workflow of our approach. We have two
goals in mind: first, it aims to fully automate the generation of the
network monitor for reducing the development cost as well as for

10.1145/1235

Figure 1: Workflow of the proposed approach

making it usable by non-security-experts. The traffic to be allowed
by the whitelist is equivalent to the normal traffic that occurs as de-
fined by the specification of the system. Therefore, the modelling
of the normal traffic is the starting point of our approach. Once the
normal traffic is modelled properly, the whitelist can be extracted
from the model and the corresponding C code is generated. The
extraction and the generation are fully automated. Second, our ap-
proach aims to ensure the reliability and security of the network
monitor. For this achievement, we integrate two kinds of verifica-
tions in the workflow. The first verification is done for the model,
from which the whitelist is generated, and the second for the mon-
itoring code, into which the whitelist is finalized. As a result, the
approach is based on the trusted generation workflow ensuring the
whitelisting network monitor is more secure and complies with the
model for which, the confidence is improved by verifying various
properties on it.

Section 2 gives an overview of the approach we follow for mod-
elling the normal traffic and verifying the model using Simulink.
The sections 3 and 4 explain how the whitelisting network monitor
is generated from the model and verified. Section 5 discusses ad-
vantages and drawbacks of our approach, making comparison with
existing works and based on our experiments of modelling and ver-
ifying in Simulink. Finally a summary of our current results and
the future improving work are given in Section 6.

2. MODELLING AND VERIFICATION US-
ING SIMULINK

To specify the industrial protocol, our approach uses Simulink
and takes advantages of its modelling and verification features. Mat-
lab Simulink is a Model-Based Design solution that is widely used
for developing embedded software in various industrial domains.
Matlab provides some certification kits in order to assist engineers
when they develop systems for critical domains having strong re-
quirements for safety and security (Automotive ISO-26262, Aero-
nautics DO-178-B). The language is equipped with a complete In-
tegrated Development Environment from design down to code gen-
eration. It provides several tools and features, like model simu-
lation, formal verification, test-case/code generators that comply
with the usual development V-cycle. The Simulink modelling is
dataflow oriented. This paradigm is well adapted to the design of
embedded software that generally react to external events and have
a few control features. However, it does not really fit when the
design require to model advanced control software, like network
protocols. Control is required to express the decision taken by net-
work entities when they receive a message in order to build the
appropriate answer. State machines are adapted for this kind of
modelling. In that work, we use Simulink Stateflow, which extends
Simulink with components defined as state machines. Figure 2 il-

Figure 2: Example of ICS

Figure 3: Top view of the model

lustrates a toy example of ICS that consists of two entities called
HMI and PLC1. HMI and PLC are connected over a local area net-
work (LAN). PLC has a field device, which is not the target of
modelling. HMI sends control commands to PLC. According to
the received commands, PLC can either actuate the field device or
read the sensor value of the device and send back the value to HMI.
In this toy system, we assume possible attacks to HMI and PLC
over LAN and consider protecting the communication on the LAN
from the attacks using a whitelisting network monitor.

We now investigate the way to model the communication proto-
col which is a counterpart of the whitelist rules. As illustrated in
the example, the use of communicating state machines is straight-
forward. Since time properties can be modelled as a timed automa-
ton in theory, we also consider encoding the periodic nature of the
network traffic in ICS in the hope that Simulink supports sufficient
time properties. The figures 3 and 4 give some illustrative parts
of a protocol modelling in Simulink. The toy system contains the
usual characteristics meet in industrial protocols. In the toy sys-
tem, HMI queries PLC for the speed data every 5ms and updates
1Both HMI and PLC are acronyms that stands for Human-Machine
Interface and Programmed Logic Controller respectively. However,
their actual meaning is not required to understand the rest of the
paper

Figure 4: The model of HMI

Figure 5: Communication model for HMI

the speed value every 50ms in the operation mode. Dually, PLC
replies to every HMI’s request by an acknowledgement or by re-
turning the expected value. The HMI’s behaviour is provided in
Figure 5 as a hierarchical state machine with timed transitions. The
control logic (the purple part of Figure 4) is used to send signals
to start/stop the system, virtually cause anomaly or switch the sys-
tem into the maintenance mode. Changing the system mode re-
lies to change the HMI state to STANDBY, MAINTENANCE or
OPERATION. Depending on the HMI’s state, the kind of allowed
messages differ: for instance it is not possible to send messages
related to the PLC configuration updating, while the system is in
OPERATION mode as depicted in Figure 5. The OPERATION
state typically denotes the nominal mode in which, HMI behaviour
has two parallel activities that are modelled as sub parallel state
machines. Message channels are unidirectional in Simulink. So in
Figure 3, two channels are used to propagate (1) from HMI to PLC
and (2) from PLC to HMI. In order to refine the modelling, differ-
ent channels can be used depending on the kind of messages. For
instance, it possible to declare two enumeration types for operation
messages and maintenance respectively. In that case two channels
from HMI to PLC such that each one has a message type restricted
to one of the category of the messages, which structurally enforces
the design. This feature is particularly interesting for more com-
plex systems. For sake of simplicity and readability, we limited
the Stateflow features used in our approach to the ones used in the
toy system: hierarchical and parallel states machines, timed transi-
tions, transition junctions, signals, message-based communications

and integer arithmetic.

Simulation and Verification of the model.
In order to help the protocol modelling, the model validity is

controlled using the Simulink engine and verified using the model
checker Simulink Design Verifier (SLDV). The Simulation is use-
ful to quickly detect some model anomalies. Animating the model
is also interesting to understand how it works. However, even long
simulations are not sufficient to cover all reachable states and as-
serts the model correctness. But this can be handled by model
checking. The formal verification offers stronger warranties about
the modelling for some categories of properties. SLDV verifies
some "Design properties" like the absence of runtime errors or for
the dead logic in the model, in the model. It is also able to check
the range of integer value s. This is very useful to check the ar-
guments of messages in the protocol: for instance, it can be used
to check that PLC always returned a correct speed value, i.e. a
value between 0 and SPEED_MAX. Dead logic denotes the unex-
ecutable parts of the model; it is useful to identify transitions that
cannot be fired. SLDV is also able to verify functional properties
on the model. The targeted properties are expressed in Simulink as
specific components tagged as "verification components". By mon-
itoring some data, the component computes the validity of each
execution step as Boolean value. Then the model checker veri-
fies this resulting value is always true during any execution of the
model. Whereas the approach is tractable for purely dataflow dia-
grams [8], the scalability becomes a strong issue when the model
contains state machines: 7 min. are required to check a property
of the form "whenever the message A sent, it can followed by the
message B only" for model with a single two-states machines. The
performances are very poor and it is not possible to verify the func-
tional property over the model of an actual system. The verification
results with SLDV are more deeply commented in Section5.

3. GENERATING THE MONITOR
Once the protocol has been fully designed in Simulink, a C im-

plementation of the monitor is automatically generated from the
model. The produced C code decides if a network packet is valid
or not in accordance with the functional specification of the proto-
col combined with the implementation details.

From Figure 1, we now focus on the code generation process.
It is divided in two steps: (1) extracting a whitelist from the model
and (2) generating the C code from this intermediate representation.
Once the generated code has been successfully verified in (3), it is
compiled and linked to a network parser in order to build the stan-
dalone monitor. The generation is parametrized by an additional
input file: the implementation details. This file provides the neces-
sary information to link the protocol model to its implementation
into the SCADA network platform.

The whitelist characterizes what network packets are legal ac-
cording to the protocol model. A packet matching one of the rules
is legal, it is suspicious otherwise. The C code implements an ac-
cepting procedure that decides if a network packet match or not a
rule, i.e. if a packet is legal or not.

3.1 Extraction of the Whitelist
The first step of the generation consists of converting an inter-

mediate representation as named as the whitelist.
Whereas the Simulink model of the protocol is abstract and only

reflects the functional features of the protocol, the whitelist is ex-
pressed at a more low-level, since acceptance criteria apply to the
data contained in the packets.

Typically the whitelist format is dedicated to a specific SCADA

State Sender Receiver Message Conditions
Standby HMI Controller StartUp -
Standby HMI Controller Maintenance -
Operation HMI Controller QuerySpeed t0 = 5ms
Operation HMI Controller ChangeSpeed t1 = 50ms

...
...

...
...

...

Table 1: Example of abstract whitelist

State Sender Receiver Message Conditions
Addr. Port Addr. Port

0 0x0a80001 * 0xc0a80014 0x0f 0x2048 -
0 0x0a80001 * 0xc0a80014 0x0f 0x2080 -
1 0x0a80001 * 0xc0a80014 0x0c 0x2112 t0 = 5
1 0x0a80001 * 0xc0a80014 0x0c 0x2144 t1 = 50
2 0x0a80001 * 0xc0a80014 0x0f 0x2176 t2 = 5

...
...

...
...

...
...

...

Table 2: Example of a low-encoded whitelist

platform that defines the data structure of the packet (e.g. MOD-
BUS/TCP [1]).

For instance, a rule may state that HMI, located at IP0, requests
for a alive confirmation to all PLCs at most every 10ms.

The functional part of the rule is coming from the Simulink
model by looking at the transitions. Since the model entirely cover
the whole protocol, valid messages are only the result of fired tran-
sitions.

Following this idea, an accepting rule denotes a transition of the
model, i.e. it is a low-level encoding of the each transition. A rule
essentially contains the addresses of the sender and the possible re-
ceivers, a command with its parameter constraints and some related
time information for the timed transitions. By simple model pars-
ing, it is possible to generate a list of abstract rules, as shown in
Table 1.

Now, this information must be encoded in the low-level format.
The implementation details, e.g. logical/hardware addresses, port
numbers and message encoding that are used by the model. . . , are
provided in an external configuration file: for instance, it maps ev-
ery protocol entity defined in the abstract model to its network iden-
tity (IP address, TCP Port), the constants encoding commands. . .

By applying this mapping on the abstract whitelist we get the
actual whitelist as illustrated in Table 2. In this example, states are
encoded using unsigned integers, senders and receivers are char-
acterized by a couple (IP/TCP). Values are either integers or hex-
adecimal constants. For the time, values are integers in millisec-
onds. The special token ’*’ is used to denote any value. In Table 2,
the token indicates that the TCP port used by HMI to communicate
can be any valid TCP port. Dually, depending on the mode, i.e. the
State, two different are used by Controller to receive messages: the
maintenance communication is done by the port 15 (0x0f) whereas
the operation messages are received through the port 12.

3.2 Generating C Implementation
Once the whitelist has been generated, we get the criteria to de-

cide if any packet observed on the network is valid. The gener-
ation of C code provides the implementation of the procedure to
decide, according to the whitelist. The procedure is implemented
using a deterministic decision tree. Each layer of the tree denotes a
criterion of the whitelist. For example, each node of the layer 1 is
associated a state value2. Selecting the sub-tree with the state 1 cor-

2The nodes of the first layer are actually the children of the tree
root

Figure 6: Architecture of the code generator

responds to select the rules of the whitelist that requires the state 1
as a valid state. The procedure iterates for other packet criteria of
the whitelist until to get a success or a failure. If the leaf is reached
then the packet is acceptable, but if none of the node of a layer
provides a criterion matching the inspected packet, this is a failure.
Because we ensure that decision tree is deterministic, there is no
need to backtrack when a failure is discovered in a sub-tree.

Our implementation of the decision tree traversal is generic. It is
able to handle any tree obtained from a whitelist. Then, the goal of
the code generator is to produce the decision tree in C code. The
generic procedure does not require any update while the whitelist
format does not change: the whitelist format is relatively defined
for a targeted SCADA framework. The approach could be trans-
posed to another platform as soon as it is enough to modify the
tools for supporting some new criteria.

Figure 6 shows the architecture of the generator of C code. It
takes a single input: the whitelist. It is parsed to produce to an
abstract syntax tree following the whitelist format. Then two activ-
ities are performed. The left branch is devoted to the construction
of the decision tree and its encoding into a static C code declaration
using the following structure:

struct tree_st {
uint32_t value;
uint32_t info[2];
conditions_t *conds;
uint32_t size;
struct tree_st *child;

};

#define leaf(value) {value, 0, (tree_t *){}}

typedef struct tree_st tree_t;

The generated code is provided into the header file rules.h,
which is required by the main file monitor.c defining the deci-
sion procedure. The right branch of the code generator focus on the
generation of code annotations required for the verification of the
C code.

4. VERIFICATION OF THE C CODE
This work is motived by the needs of having reliable and secure

monitoring procedures for industrial contexts such as SCADA net-
works. In order to provide some strong guaranties, it is critical to
obtain an implementation free of bugs and that is sound according

to its specification. This goal is achieved using the tool Frama-
C [11] which provides a battery of plug-ins for statically analysing
or/and verifying C programs. This work relies on the WP plug-
in [4] that performs formal reasoning on C programs in order to
prove two kind of properties. Frama-C is used to demonstrate (1)
the code is free of runtime errors for any execution of the monitor
and (2) the procedure only accepts legal packets according to the
whitelist.

4.1 Proving the Absence of Runtime Errors
Proving the code is free of runtime errors is corner stone to pro-

vide secure code. It ensures that the code never crashes and it
always deal properly with memory addresses and pointers, which
avoids a lot of vulnerabilities.

For this proof activity, Frama-C/WP automatically detects the
instructions which may produce a runtime error and annotates it
with assertions:

//@assert signed_overflow: i+1<=2147483647;
i++;

//@assert mem_access: \valid_read(data);
if (*data == 1) {
...
}

In the example above, Frama-C/WP asserts that i < MAX_INT is
required to avoid the integer overflow. Similarly, the address stored
in data must be valid, i.e. it points to the allocated memory on the
heap or the stack. Proofs are done by backward reasoning on the
formal semantics of C as defined by the weakest pre-condition cal-
culus and proof obligations are resolved using automatic theorem
provers such as Z3 [14], Alt-Ergo [7], CVC4 [2]. . .

Our generic decision procedure is about 600 loc. Frama-C adds
50 assertions related to prove the absence of runtime errors.

4.2 Proving the Soundness
Since the monitor activity has a central role to ensure the security

of the industrial network. An unreliable monitor could accept some
illegal packets due to an implementation problem from the gener-
ated C code. This problem could come from a bug in the generic
decision procedure or from the tree generated by the C-code gener-
ator.

In ACSL, the specification language [?] of Frama-C, contracts
are used to express properties about C functions. A contract for-
mally states some guaranties ensured by the execution of function,
assuming the requirements of the contract are ensured when the
function is called.

/*@requires \valid((tree_t*) rules)
&& valid_tree_t(*rules);
@requires parsed;

@ensures \result == 1 ==> matched;
@assigns \nothing;
*/
int monitor(void);

This contract specifies the soundness of the monitor. It requires that
the global variable rules points to a valid memory address con-
taining a decision tree that satisfies the predicate valid_tree_t.
This predicate mainly requires that the arrays conds and child
have size elements in all node. A set of global variables contains
the values unpacked from the network packet parser. The predi-
cate parsed requires that the parser was invoked and these vari-
ables are properly set. The clause @assigns \nothing speci-
fies that monitor has no side effect: its execution never modifies

any global variable. Finally the soundness property is given by the
clause @ensures. It states that when monitor returns the value
1, the packet network is matched by one rule of the whitelist.

The definition of the predicate matched is provided to the code
generator. It is depicted by the right-branch in Figure 6. It is a
rewriting of the whitelist in the ACSL syntax:

@predicate rule_2 =
state == 0 &&
send_info[IP] == 0x0a80001 &&
0 <= send_info[TCP] <= 65535 &&
recv_info[IP] == 0xc0a80014 &&
recv_info[TCP] == 0x0c &&
command == 0x2112 &&
timers[0] == 5;

This job is done for every rule of the whitelist. The line 0 <=
send_info[TCP] <= 65535 means any valid TCP port de-
noted by the joker * in the whitelist. The identifiers state,
send_info, recv_info... are the global variables con-
taining the data collected by the network parser. The predicate
rule_2 is satisfied when the global variables satisfy each con-
straint. Once every rule is translated into ACSL, the predicate
matched claiming that one parsed packet satisfies one of the rules
is satisfied:

@predicate matched =
rule_0 || rule_1 || rule_2 || ...;

Once both generated files rules.h and spec.h the proof is
run by Frama-C. Since the traversal of the tree is done with sev-
eral loops and recursive calls, proving this code in Frama-C re-
quires manual annotations: Every loop needs an invariant that helps
Frama-C to efficiently reason through the loop body.

Because of the architecture of the monitor, having a generic deci-
sion procedure is a very powerful advantage. Every time, the code
for a new whitelist is generated, only the files rules.h and the
Frama-C specification spec.h are re-created: The generic part of
the monitor is not impacted. Manual annotations do not need to be
changed or proven again: they have been stated for any whitelist
according to the format. The proofs that must be replayed are
the proofs related to the contract of monitor(), since the defi-
nition of matched and the global declaration of rules may have
changed. And for it, Frama-C verification is still automated, no
manual proof activity is needed, automatic theorem provers are able
to discharge the proof obligations requested by Frama-C.

5. DISCUSSION
We compare the solution we experimented with existing work

and tools before to discuss advantages and drawbacks that we iden-
tified during this work.

Comparison with Existing Works.
First of all, this approach model-based development including

formal methods is not the first one. One of the most advanced
graphical formal languages equipped with a complete framework is
SCADE [6]. It is essentially used in aeronautics and railway. Mod-
elling with state machines is also common in telecommunications:
the language SDL [13], pushed as a standard by ITU-T, uses them
to model the process behaviours. Commercial tools like Rational
SDL Suite (IBM) or PragmaDev Studio offer IDEs for modelling,
simulation and code generation. However, those tools are more
dedicated to the development of new protocol. They could be used
to specify a monitor but it has to be completely designed in the tool.
Possible alternatives are the use of a packet parser generator [16]
in order to extend some generic network security monitors [18, 17]

for a new protocol: it is entirely described using a grammar, but the
resulting specification contains too many implementation details;
whereas it simplifies the reduce the gap between the usual imple-
mentation and it is still difficult to be convinced that it correctly
implements the actual protocol specification. There also exist sev-
eral works about certifying standard protocols (e.g. TCP) using
proofs assistants [3, 5]. Focusing on the automated generation, our
approach is comparable to Hadeli’s one [10]. But, the method uses
the system specification SCD, standardized in IEC 61850 and only
generates the detection rules.

Finally, the novelty of this work is to propose a framework based
on model-based engineering providing a trusted mechanism able to
generate monitor with high confidence degree and for security pur-
pose. Using a graphical language is convenient for the design and
makes models more readable by focusing on the functional features
of the protocol, cleaned of implementation aspects. Combined with
formal methods, our approach ensures to build a high quality model
from which, a monitor free of bugs is built. Moreover, the formal
verification steps used are highly automated, which renders them
more practicable by protocol engineers. Finally, Simulink is fre-
quently used in industries, which eases the adoption of such an
approach: there is no need to learn a specific or unusual language.

For now, the whitelist format supports 10 sorts of criteria to dis-
criminate the packets. To scale up from the proof of concept to an
industrial application, we need to extend it. This mainly requires to
update the tool-chain to handle these extensions.

Model checking by Simulink Design Verifier (SLDV).
Even if model checking is an automatic way to improve the con-

fidence in the model, the choice of Simulink has some drawbacks
for the verification. We experimented the model checking by using
SLDV. By default, SLDV conducts runtime error detection, which
can detect runtime errors such as division-by-zero and overflow,
leading to potential usefulness for identifying security vulnerabili-
ties. However, runtime error detection is of no use for our purposes
because our approach does not use executable code generation of-
fered by Simulink. Instead, as discussed in Section 3 and Sec-
tion 4, our approach generates and verifies monitoring C code on
its own. Potentially of some use is detection of dead logic. Dur-
ing our experiment, we detected dead logic in the model shown in
Figure 5. It has been useful, to demonstrate that positioning man-
ual switches actually enforces the change of mode in the protocol.
For instance, The model-checker identifies as dead-logic the transi-
tions entering in the state OPERATION (Figure 5) when the value
CTRL.FORCE_MAINTENANCE has been set by using the man-
ual switches shown in Figure 4. Indeed, it leads us to get a formal
proof that when the maintenance is requested to HMI, it cannot en-
ter anymore in the mode OPERATION while the maintenance is
requested. This work can be generally applied to check the effi-
ciency of every system mode.

Functional properties can be checked but not for models includ-
ing state-machines. The support for them is very poor: SLDV does
not scale up, which avoids us to get results for non-trivial proper-
ties even when we considered sub-parts of the state machines. In
the end, our experiments have shown that it can be only used to
check basic design properties of the model or only functional prop-
erties limited to the mode efficiency.

Timed properties.
Depending on the types of timed schedule required by the mod-

elling, Stateflow’s timed transitions are not sufficient and may re-
quire ad-hoc encoding to share the same timers between several
control state (timed transitions are based on timers local to the ori-

Figure 7: Timed model using Stateflow primitives

Figure 8: Timed model based on a global clock

gin control state). First, we examined the time parameters natively
supported by Stateflow that are included in the model in Figure 5.
Figure 7 shows a simpler example of timed model. In the example
in Figure 7, two guards called "after" and "before" are used as the
transition conditions between the state S0 and S1. The description
"after(5, sec)" makes the state transition after five seconds from the
entry into S0. Likewise, by "before(4, sec)", the state transition af-
ter four seconds from the entry into S1. At first sight, the model
appears to represent a period condition that we wish to encode, but
in fact it does not because the internal timers of the "after" and
"before" guards are not kept across different states.

Instead, it is possible to encode a period condition using a global
timer that is supported by Simulink, as shown in Figure 8. How-
ever, this kind of ad-hoc method induces another drawback because
it makes it hard to model the system and understand the model,
eliminating one of the major advantages of model-based develop-
ment. Furthermore, it can affect the verification of the model by
virtually increasing the number of reachable states. Nevertheless,
we conclude that it is not a real weakness of our approach because
the period of network communication is considered one of the im-
plementation details given from outside the model as shown in Fig-
ure 1.

Potential Weakness.
A potential weakness may still exist at the building of the whitelist.

There is no verification mechanism to improve the soundness of the
transformation from the model to whitelist and form the whitelist
to ACSL specification. We consider it as acceptable because model
extraction mechanism consists of a simple enumeration of the tran-
sitions followed by a rewriting into a table. Similarly, transforming
the whitelist into ACSL annotations is a syntactic rewriting also
simple. Verifying these transformations is equivalent to reverse
them and check the result is the identity. It does not bring so much
more confidence since the algorithms are straightforward and very
close from their reverse. In comparison, generating code sound and
free of bugs is really more challenging.

6. CONCLUSION
This paper proposes the very first trusted and tooled approach to

design a whitelisting network monitor and presents a proof of con-
cept based on a toy example. The use of the familiar and graphical
modelling tool Simulink, the automated generation process and the
embedded verification mechanism together contribute to designing
a reliable and secure whitelisting network monitor for industrial
control systems (ICS). Some drawbacks have also been identified
regarding the use of Simulink which does not completely meet our
methodology ambition on two points. First, Simulink lacks suffi-
cient verification performance for our purposes, especially scalabil-
ity. Therefore, we must seek another means of model verification.
Next, the native support of timed properties may not be sufficient
to encode period conditions that are usually seen in ICS. However,
it is not really an issue because period conditions could be part of
the implementation details, i.e. supplied from outside the model.

Finally, this work set the first milestone of an innovative ap-
proach for developing a secure ICS monitor, some improvements
are needed before to become applicable to effective SCADA sys-
tems. Because the number of parameters are bigger than in our
example, the first step is to handle a genuine format of whitelist.
Thus, we will be able to apply our framework design an industrial
case comparable to the ones developed at Mitsubishi Electric. We
are going to also consider additional verification tool especially to
enable verification for more properties about the model. From the
security point of view, it is also interesting to measure the moni-
tor performance: the soundness ensure that it detects all suspicious
packet (by rejection), but it is not sufficient to deploy the tool. An
oracle is generally required analyse and rank the alarms to measure
the likelihood of attacks. This step is necessary to help system op-
erators to quickly distinguish actual attacks against from network
issues like delays or lost packets.

7. REFERENCES
[1] Modbus Specifications and Implementation Guides.

http://www.modbus.org/specs.php.
[2] CVC4 1.4: an efficient automatic theorem prover.

http://cvc4.cs.nyu.edu, 2014.
[3] AFFELDT, R., AND KOBAYASHI, N. Formalization and

verification of a mail server in coq. In Proceedings of the
2002 Mext-NSF-JSPS International Conference on Software

Security: Theories and Systems (Berlin, Heidelberg, 2003),
ISSS’02, Springer-Verlag, pp. 217–233.

[4] BAUDIN, P., BOBOT, F., CORRENSON, L., AND DARGAYE,
Z. Frama-c/wp manual. Tech. rep.,
http://frama-c.com/download/frama-c-wp-manual.pdf.

[5] BISHOP, S., NORRISH, M., AND SEWELL, P. Engineering
with logic: Rigorous specification and validation for tcp/ip
and the sockets api.

[6] BOULANGER, J.-L., FORNARI, F.-X., CAMUS, J.-L., AND
DION, B. SCADE: Language and Applications, 1st ed.
Wiley-IEEE Press, 2015.

[7] CONCHON, S., AND CONTEJEAN, E. The Alt-Ergo
automatic theorem prover. http://alt-ergo.lri.fr/, 2008.

[8] DELEBARRE, V., AND ETIENNE, J.-F. Proving Global
Properties with the Aid of the SIMULINK DESIGN
VERIFIER Proof Tool. John Wiley & Sons, Inc., 2013,
pp. 183–223.

[9] GOLDENBERG, N., AND WOOL, A. Accurate modeling of
modbus/tcp for intrusion detection in scada systems. In
International Journal of Critical Infrastructure Protection,
vol. 6, no. 2, pp. 63–75, 2013.

[10] H. HADELI, R. SCHIERHOLZ, M. B., AND TUDUCE, C.
Leveraging determinism in industrial control systems for
advanced anomaly detection and reliable security
configuration. In Proceedings of the Conference on
Emerging Technologies Factory Automation, pp. 1–8, 2009.

[11] KIRCHNER, F., KOSMATOV, N., PREVOSTO, V.,
SIGNOLES, J., AND YAKOBOWSKI, B. Frama-c: A software
analysis perspective. Formal Aspects of Computing 27, 3
(2015), 573–609.

[12] KLEINMANN, A., AND WOOL, A. Accurate modeling of the
siemens s7 scada protocol for intrusion detection and digital
forensics. In JDFSL, vol. 9, no. 2, pp. 37–50, 2014.

[13] KUHN, T., GOTZHEIN, R., AND WEBEL, C. Model-driven
development with sdl – process, tools, and experiences. In
Proceedings of the 9th International Conference on Model
Driven Engineering Languages and Systems (Berlin,
Heidelberg, 2006), MoDELS’06, Springer-Verlag,
pp. 83–97.

[14] MICROSOFT. The Z3 theorem prover.
https://github.com/Z3Prover/z3, 2015.

[15] P. GARCÍA-TEODORO, J. DÍAZ-VERDEJO, G. M.-F., AND
VÁZQUEZ, E. Anomaly-based network intrusion detection:
Techniques, systems and challenges. In Computers &
Security, vol. 28, no. 1–2, pp. 18–28, 2009.

[16] PANG, R., AND SOMMER, R. binpac: A yacc for writing
application protocol parsers. In In submission (2006),
pp. 289–300.

[17] PAXSON, V. Bro: A system for detecting network intruders
in real-time. In Computer Networks (1999), pp. 2435–2463.

[18] ROESCH, M. Snort - lightweight intrusion detection for
networks. In Proceedings of the 13th USENIX Conference on
System Administration (Berkeley, CA, USA, 1999), LISA
’99, USENIX Association, pp. 229–238.

[19] SYMANTEC. Dragonfly: Cyberespionage attacks against
energy suppliers. , https://www.symantec.com/content/en/
us/enterprise/media/security_response/whitepapers/
Dragonfly_Threat_Against_Western_Energy_Suppliers.pdf.

[20] SYMANTEC. W32.stuxnet dossier. Tech. rep.,
https://www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/w32_stuxnet_dossier.pdf.

http://www.modbus.org/specs.php
http://cvc4.cs.nyu.edu
http://frama-c.com/download/frama-c-wp-manual.pdf
http://alt-ergo.lri.fr/
https://github.com/Z3Prover/z3
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/Dragonfly_Threat_Against_Western_Energy_Suppliers.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/Dragonfly_Threat_Against_Western_Energy_Suppliers.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/Dragonfly_Threat_Against_Western_Energy_Suppliers.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

	Introduction
	Modelling and Verification Using Simulink
	Generating the Monitor
	Extraction of the Whitelist
	Generating C Implementation

	Verification of the C Code
	Proving the Absence of Runtime Errors
	Proving the Soundness

	Discussion
	Conclusion
	References

