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Abstract—Innovative mapping schemes for Space-Frequency
Block Codes (SFBC) which are compatible with the structure of
Single-Carrier Frequency Division Multiple Access (SC-FDMA)
systems are introduced. We first show that existing space-time
and space-frequency block codes lack flexibility in terms of
framing or cause a degradation of the signal envelope properties
when combined with SC-FDMA. Then, we present an Alamouti-
based orthogonal code designed for 2 transmit antennas that
makes use of an innovative mapping in the frequency domain
to preserve the low envelope properties of SC-FDMA. Next,
an extension of this concept to a quasi-orthogonal code for
4 transmit antennas is presented and analyzed. We prove the
good performance of the proposed schemes over multiple-input
multiple-output (MIMO) channels both in static and in high-
mobility scenarios.

Index Terms—Space-Frequency Block Code (SFBC), Space-
Time Block Code (STBC), Single-Carrier Frequency Division
Multiple Access (SC-FDMA), Peak-to-Average Power Ratio
(PAPR), Multiple-Input Multiple-Output (MIMO).

I. INTRODUCTION

MULTIPLE-Input Multiple-Output (MIMO) techniques
have become an indispensable part of wireless com-

munications systems in order to satisfy the ever increasing
demands for higher throughput or improved performance. The
use of multiple antennas both at the base station and at the
terminal can improve the bit error rate (BER) performance
by benefiting from spatial diversity, increase the transmit-
ted data rate through spatial multiplexing, reduce interfer-
ence from other users, or make some trade-off among the
above. MIMO techniques have been incorporated in all recent
wireless communications standards (e.g., IEEE 802.11n for
wireless local area networks - WLAN, IEEE 802.16e-2005 for
mobile WiMAX, etc.) [1], most of them relying on OFDMA
(Orthogonal Frequency Division Multiple Access) or one of
its derivatives. This multi-carrier (MC) radio access is very
popular for its well-known advantages: Good spectral effi-
ciency, good coverage, flexible dynamic frequency allocation,
simple equalization at tone level [2], etc. But OFDMA has
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the drawback of high peak-to-average power ratio (PAPR),
which is a common characteristic of all MC modulations [3].
Significant efforts are being made to efficiently reduce the
PAPR [4].

For the uplink of Long Term Evolution (LTE) of UMTS
(Universal Mobile Telecommunications System), the Third
Generation Partnership Project (3GPP) opted for a precoded
OFDMA air interface, called Single-Carrier Frequency Divi-
sion Multiple Access (SC-FDMA). The precoder is a Direct
Fourier Transform (DFT), which restores the low envelope
fluctuations of SC systems [5]. But SC-FDMA loses this
property in MIMO systems if no precaution is taken. Indeed,
conventional space-frequency block codes (SFBCs) permute
the spectral components of the transmitted signal and destroy
the low PAPR property.

In this paper, we present an innovative mapping which
preserves the low PAPR property of SC-FDMA with SFBCs.
The paper is organized as follows: Conventional transmit di-
versity schemes in conjunction with SC-FDMA are presented
in Section II. Two novel SFBC schemes with innovative map-
ping are described in Sections III and IV, respectively. Their
performance is assessed in Section V, and finally, Section VI
gives our conclusions.

II. SPACE TIME AND FREQUENY CODING IN SC-FDMA

In this paper, the notations (.)−1, (.)†, (.)T, (.)H, (.)∗ and
⊗ stand for the inverse, pseudo-inverse, transpose, Hermitian,
complex conjugate and Kronecker product of vectors or ma-
trices, respectively. All signals will be represented by their
discrete-time baseband equivalents. We will use the following
notations:

• J =
[

0 1
−1 0

]
, 02 =

[
0 0
0 0

]
;

• P(J)
M an M -sized block-diagonal matrix containing M/2

copies of J on its main diagonal, and P̄(J)
M is the M -

sized block-antidiagonal matrix containing M/2 copies
of J on its secondary diagonal:

P(J)
M =



[
0 1
−1 0

]
02 · · · 02

02

[
0 1
−1 0

]
· · · 02

...
...

. . .
...

02 02 · · ·
[

0 1
−1 0

]


(1)
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P̄(J)
M =



02 · · · 02

[
0 1
−1 0

]
02 · · ·

[
0 1
−1 0

]
02

... . . .
...

...[
0 1
−1 0

]
· · · 02 02


(2)

• FM the M×M matrix describing a normalized M -point
DFT, with elements Fk,n = ωknM /

√
M on the k-th row

and n-th column, where k, n = 0...M − 1 and ωM =
e−j2π/M is a primitive root of unity;

• F−1
M = FH

M = F∗M , the M -point inverse DFT (IDFT);
• SpM is an operator which cyclically shifts the rows of an

M-sized matrix down by p positions:

SpM =


0 · · · · · · 0 1
1 0 0 0

0 1
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 1 0



p

. (3)

For any complex vector x = [x0, x1, x2, ..., xM−1]T the
following properties and inequalities hold:

(P1): x̄ = FH
MFH

Mx = [x0, xM−1, xM−2, ..., x1]T is the
time reversed version of vector x (x̄k = x(−k) mod M , where
mod is the modulo operator and k = 0...M − 1) [6].

(I1):
∣∣∣∣M−1∑
i=0

xiyi

∣∣∣∣2 ≤ (M−1∑
i=0

|xi|2
)(

M−1∑
i=0

|yi|2
)

, where xi ∈
C (the Cauchy-Schwarz inequality [7]). The equality holds if
and only if x and y are linearly dependent, i.e., one is a scalar
multiple of the other.

(I2):
∣∣∣∣M−1∑
i=0

xi

∣∣∣∣ ≤ M−1∑
i=0

|xi|, where xi ∈ C. Equality holds

if and only if all xi have the same argument, that is, xi =
|xi| ejφ0 , φ0 ∈ [0, 2π),∀i = 0...M − 1.

A. SC-FDMA and Antenna Precoding

As opposed to MC-FDMA schemes, SC-FDMA combines
a single-carrier signal with an OFDMA-like multiple access
and attempts to achieve the advantages of both techniques:
Low PAPR and flexible dynamic frequency allocation. In what
follows, we review the principles of SC-FDMA, determine
at what point in the transmitter it is possible to implement
transmit diversity precoding, and finally, we give a system
model for SC-FDMA transmission with multiple transmit
antennas.

SC-FDMA can be found in the literature under different
names. It was first conceived in a time-domain implemen-
tation [8] called IFDMA (Interleaved Frequency Division
Multiple Access), which structurally imposes a distributed
subcarrier allocation. At time (t), blocks of M data symbols
x

(t)
k , k = 0...M − 1 (e.g., Quaternary Amplitude Modula-

tion (QAM) symbols) are parsed into data blocks x(t) =[
x

(t)
0 , x

(t)
1 , ..., x

(t)
M−1

]T
of duration T = MTs, where Ts is the

QAM symbol duration. These blocks are K-time compressed
and K-time replicated to form the IFDMA signal with the
same duration T = NTc where N = KM and Ts = KTc,
Tc being the chip duration. As theoretically proven in [9],
this manipulation has a direct interpretation in the frequency
domain: The spectrum of the compressed and K-times repli-
cated signal has the same shape as the original signal, with
the difference that it includes exactly K − 1 zeros between
two data subcarriers.

The spectral considerations above open the way to a
frequency-domain implementation of SC-FDMA [5], some-
times called DFT-spread OFDM, since precoding is done
by means of a DFT. The system model for single antenna
SC-FDMA transmission (detailed in [10]) follows a classical
structure of precoded-OFDMA system which consists of DFT
precoding, zero insertion and subcarrier mapping, followed by
IDFT processing and cyclic prefix (CP) insertion. The insertion
of space-time (ST) or space-frequency (SF) precoding in a
SC-FDMA transmitter must be carefully chosen. It is well
known that in OFDMA-like systems, the IDFT operation is
equivalent to splitting the information transmitted through a
wideband channel into parallel data streams, each one being
transmitted by modulating a distinct subcarrier [1], [2]. Thus,
ST/SF precoding relying on codes originally designed for the
narrowband case should be inserted after DFT precoding at
subcarrier level.

Fig. 1 shows how ST/SF precoding can be implemented in
a SC-FDMA transmitter with NTx transmit antennas and M
out of N allocated subcarriers. Data block x(t) consisting in
M modulation symbols is DFT-precoded by means of an M -
sized DFT FM , resulting in M -sized vectors s(t) = FMx(t).
From the DFT output, ST/SF precoding generates NTx vectors
sTxj ,(t), j = 0 . . . NTx− 1, to be mapped following a specific
subcarrier allocation described by an N ×M matrix Q (N ≥
M) as, e.g.:

Qlocalized
N×M =

 0q×M
IM

0(N−q−M)×M

∣∣∣∣∣∣
q∈{0...N−M}

, or

Qdistributed
N×M = IM ⊗

 0n×1

1
0(N/M−n−1)×1

∣∣∣∣∣∣
n∈{0...M−1}

,

(4)
and passed through an N-point IDFT. In a vector form,

the SC-FDMA symbols generated on each antenna branch
become:

yTxj ,(t) = F−1
N QsTxj ,(t). (5)

The form of the matrix Q might lead to contiguous [5],
distributed [8], mixed [9] or even channel-dependent subcarrier
allocation. We will consider here the contiguous (localized)
and the distributed cases, since other schemes may lead
to PAPR degradation. In a distributed subcarrier allocation
scenario, frequency-domain generated SC-FDMA is strictly
identical to time-domain generated IFDMA. To simplify chan-
nel estimation, LTE preferred localized subcarrier allocation.
A cyclic prefix is usually inserted before transmission (and
removed at the receiver before demodulation) to eliminate the
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Fig. 1. Block diagram of a SC-FDMA transmitter with ST/SF precoding (M
out of N allocated subcarriers, NTx transmit antennas).

SC-FDMA modulation 

(NxM)

Data

block x(t)

(sizeM)
Equivalent

time-domain

ST/SF

Precoding

0Tx ,( )

equiv

t
x

1Tx
Tx ,( )

equiv

N t
−x

(M)

(M) (N)1

N M

−

F QF

0Tx ,( )t
y

1Tx
Tx ,( )N t

−y

SC-FDMA modulation 

(NxM)
1

N M

−

F QF
(N)

0Tx

Tx 1TxN −

Fig. 2. Block diagram of a SC-FDMA transmitter with time-domain
equivalent ST/SF precoding.

inter-symbol interference (ISI) arising from multipath propa-
gation. Here, we will assume that the CP is long enough to
absorb the ISI and we will omit it from further representations.

Any frequency manipulation performed in the ST/SF pre-
coding block can be easily translated into the time domain.
For any transmit antenna Txj, j = 0...NTx−1, we denote by:

xTxj ,(t)
equiv = F−1

M sTxj ,(t) (6)

the equivalent time-domain virtual constellation (dependent
on the original constellation x(t)) that would produce yTxj ,(t)

when undergoing SC-FDMA modulation, that is:

yTxj ,(t) = F−1
N QFMxTxj ,(t)

equiv . (7)

This interpretation leads to the equivalent transmitter rep-
resentation in Fig. 2. This model is generally not targeted
for a practical implementation of an ST/SF frequency-domain
precoded SC-FDMA due to its higher complexity with respect
to the one in Fig. 1. We will simply make use of it to give some
insight on the signal structure and explain the PAPR properties.
This equivalent representation also provides a powerful means
to convert the ST/SF precoding family presented in this paper
to systems where we have no physical access to the subcarriers
(e.g., IFDMA with time-domain implementation).

To describe ST/SF codes, we will first describe the ST/SF
precoding matrix and the signal representation in the frequency
domain sTx0,1,(t). Then, we will describe the equivalent con-
stellations xTx0,1,(t)

equiv to be sent to each antenna after SC-
FDMA modulation, and finally we will comment on the PAPR
properties of SC-FDMA signals based on these constellations.

B. Space-Time Block Codes for SC-FDMA

According to the propagation conditions of each terminal,
coding, modulation and MIMO techniques need to be dy-
namically and jointly optimized to maximize overall network
performance. A terminal with good propagation conditions,
for example, may enhance its throughput by employing spatial

TABLE I
EXAMPLE OF STBC PRECODING WITH A

(I)
01

Time t0 = 2t Time t1 = 2t + 1

On k-th Tx0 s
Tx0,(t0)
k = s

(t0)
k s

Tx0,(t1)
k = s

(t1)
k

subcarrier Tx1 s
Tx1,(t0)
k = −

(
s
(t1)
k

)∗
s
Tx1,(t1)
k =

(
s
(t0)
k

)∗
At block Tx0 sTx0,(t0) = s(t0) sTx0,(t1) = s(t1)

level Tx1 sTx1,(t0) = −
(
s(t1)

)∗
sTx1,(t1) =

(
s(t0)

)∗

multiplexing techniques, or employ adaptive transmission as a
function of the available channel state information (CSI). On
the other hand, for a terminal subjected to bad propagation
conditions or unreliable CSI (e.g., close to the cell edge or in
high velocity scenarios), the best option is to take advantage
from transmit diversity. One of the most elegant, simple and
well-known transmit diversity schemes for NTx = 2 transmit
antennas was introduced by Alamouti [11]. It is an orthogonal
code ensuring full diversity at a rate of one symbol per channel
use (half of the maximum achievable data rate), while keeping
a very simple optimum decoder. Let us consider the original
precoding matrix A01 [11] and an equivalent version A(I)

01 :

A01 =
(

a0 a1

−a∗1 a∗0

)
,A(I)

01 =
(
a0 −a∗1
a1 a∗0

)
. (8)

Space-time block codes (STBC) [12] can be considered as
an attractive solution for SC-FDMA due to their simplicity
and performance. The symbol on the i-th row (i = 0, 1) and
j-th column (j = 0, 1) of the matrices (8) is transmitted on
the j-th transmit antenna Txj during the i-th time interval
ti. In combination with SC-FDMA, this results in a scheme
like in Fig. 1, where NTx = 2 and the ST/SF precoding is
an Alamouti-based STBC. Pairs of M -sized vectors s(t0) and
s(t1) obtained through DFT precoding are Alamouti precoded
and the resulting signals go through classical OFDMA modu-
lation, i.e., subcarrier allocation (zero insertion and subcarrier
mapping), IDFT and CP insertion. For the Alamouti STBC,
we choose any of the matrices in (8) with the convention:

ai = s
(ti)
k , (∀k = 0...M − 1, i = 0, 1) . (9)

On each of the M occupied subcarriers, Alamouti precoding
is performed between the corresponding frequency samples
s

(t0=2t)
k and s

(t1=2t+1)
k belonging to two successive time

blocks. This allows the receiver to use a simple STBC decoder.
An example of precoding with A(I)

01 is given in Table I.
Let us revisit the representation given in Fig. 2. We always

send on the first transmit antenna Tx0 an SC-FDMA signal
corresponding to the original constellation x(t), i.e., sTx0,(t) =
s(t). This ensures a low-PAPR SC-FDMA signal on the first
antenna, independently of the type of ST/SF precoding. Matrix
A(I)

01 is therefore privileged. From Table I and (6) we have:



xTx0,(ti)
equiv = x(ti), i = 0, 1

xTx1,(t0)
equiv = F−1

M ·
(
−s(t1)

)∗
= −FH

MFH
M

(
x(t1)

)∗
= −

(
x̄(t1)

)∗
xTx1,(t1)

equiv = F−1
M ·

(
s(t0)

)∗
= FH

MFH
M

(
x(t0)

)∗
=

(
x̄(t0)

)∗
.

(10)
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If the elements of x(t0,1) belong to a QAM constellation,
then their complex conjugate time-reversed versions are also
sets of QAM symbols. Thus, on both transmit antennas, we
always send SC-FDMA modulated signals corresponding to a
QAM constellation. Consequently, these signals have strictly
the same PAPR as the original signal. Since STBC precoding
is performed for each subcarrier independently, the frequency
structure of the signal is not impacted and we can consider
that Alamouti precoding is performed at block level, as if we
were precoding between s(t0) and s(t1). As a result, SC-FDMA
symbols must be precoded by pairs. From a practical point
of view, this imposes that all uplink bursts contain an even
number of data blocks, which may be hard or impossible to
ensure. This type of restriction also prevents the use of some
algorithms relying on the flexibility of the data allocation [13].
As another drawback, STBC is also reported in [14] to be
sensitive to high vehicular speeds.

C. Space-Frequency Block Codes for SC-FDMA

The idea of using an STBC in the frequency domain as
SFBC is not new, and it has been proven [15] that there is no
diversity or capacity loss by applying the Alamouti scheme as
SFBC with respect to the case where it is applied as STBC.
In order to describe the implementation of an Alamouti-type
SFBC, let us consider that the symbols on different rows of
any of the matrices (8) no longer correspond to transmission
over different intervals of time t0,1, but to transmission on
different subcarriers k0,1:

ai = s
(t)
ki
, i = 0, 1, (∀) t. (11)

Alamouti precoding classically involves adjacent frequency
samples to be mapped onto contiguous subcarriers, i.e., k0 =
2k and k1 = 2k+ 1 in a localized allocation scenario or close
subcarriers in a distributed allocation scenario so as to allow
simple decoding strategies. In contrast to STBC, SFBC does
not require data bursts to be composed of an even number of
SC-FDMA symbols. It only requires the number of allocated
subcarriers M to be even, which is much easier to achieve in
practice.

Table II provides the implementation using matrix A(I)
01 .

When SFBC mapping is performed as described in Table II, we
send on Tx0 a SC-FDMA signal corresponding to the original
constellation x(t), i.e., represented in the frequency domain as
sTx0,(t) = s(t) after SF precoding. sTx1,(t) is given by:

sTx1,(t) =
[
−s(t)∗

1 , s
(t)∗
0 ,−s(t)∗

3 , s
(t)∗
2 ...− s(t)∗

M−1,−s
(t)∗
M−2

]T
= P(J)

M

(
s(t)
)∗
.

(12)
A comparison of implementations using matrices A01 and

A(I)
01 is given in [16]. Using A01 instead of A(I)

01 degrades the
PAPR on both transmit antennas by about 1 dB with respect
to single antenna transmission. Using A(I)

01 turns out to be
more convenient, since the signal on Tx0 is undistorted. The
PAPR loss on the second transmit antenna will be evaluated
in Section V.

TABLE II
EXAMPLE OF SFBC (RESP. SC-SFBC) PRECODING WITH A

(I)
01

At time t Subcarier k0 = 2k
Subcarrier k1 = 2k + 1
(resp. k1 = 2p−1−k0)

At sub-
carrier Tx0 s

Tx0,(t)
k0

= s
(t)
k0

s
Tx0,(t)
k1

= s
(t)
k1

level Tx1 s
Tx1,(t)
k0

= −
(
s
(t)
k1

)∗
s
Tx1,(t)
k1

=
(
s
(t)
k0

)∗
At block Tx0 sTx0,(t) = s(t)

level Tx1
sTx1,(t) = P

(J)
M

(
s(t)

)∗(
resp.sTx1,(t) = PM

(
s(t)

)∗)

In order to understand the impact of SFBC mapping with
A(I)

01 on the time-domain SC-FDMA signal sent on Tx1, let us
consider the equivalent-constellation representation. Since all
operations are performed within the same SC-FDMA symbol,
we will omit the superscript (t) in the following. From (6),
the equivalent-constellation representation is thus given by:

{
xTx0

equiv = x
xTx1

equiv = F−1
M ·P

(J)
M s∗ = F−1

M P(J)
M F−1

M · x∗
, (13)

where P(J)
M s∗ models the effect of SFBC precoding with

matrix A(I)
01 on Tx1 as explained in (12). The (m,n)-th

element of matrix F−1
M P(J)

M F−1
M

∆= Π(J) (m,n = 0...M − 1)
can be computed as:

Π(J)
m,n =

M−1∑
k=0

F ∗m,k

(
M−1∑̀

=0

P
(J)
k,` F

∗
`,n

)
= 1

M

M−1∑
k=0

M−1∑̀
=0

P
(J)
k,` ω

−(km+`n)
M

. (14)

But since P(J)
M (given in (1)) is a sparse block diagonal

matrix containing M/2 repetitions of matrix J, we can isolate
M/2 groups of two non-null elements and rewrite:

Π(J)
m,n = 1

M

M/2−1∑
q=0

(
−ω−(2qm+(2q+1)n)

M + ω
−((2q+1)m+2qn)
M

)
= ω−m

M −ω−n
M

M

M/2−1∑
q=0

(
ω
−2(m+n)
M

)q
=
{

1
2 (ω−mM − ω−nM ), if [2 (m+ n)] mod M = 0
0, otherwise.

(15)
In conjunction with (13), this gives the elements of the

equivalent constellation xTx1
equiv as a function of the original

constellation elements:

xTx1
m,equiv =

M−1∑
n=0

Π(J)
m,nx∗n =

∑
n∈{M−m,M/2−m}

Π(J)
m,nx∗n

= cos
(
2π mM

)
x∗(M/2−m) mod M

+j sin
(
2π mM

)
x∗M−m.

(16)
By applying inequality (I1) to relation (16), it can easily be

seen that the maximum attainable peak power of the equivalent
constellation xTx1

equiv is doubled with respect to x, since:
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max
(∣∣∣xTx1

equiv

∣∣∣2) = max
m

(∣∣∣xTx1
m,equiv

∣∣∣2)
≤ max

m

(∣∣xM−m∣∣2 +
∣∣∣xM/2−m

∣∣∣2)
= 2 max

(
|x|2

)
.

(17)
Equality is attained when arg

(
xM/2−m/xM−m

)
= π/2,

m = M/8. The mean power is not affected, since all
operations in (13) preserve the mean power. The PAPR of the
equivalent constellation is thus higher on Tx1, which indicates
that the resulting SC-FDMA signal will also have a higher
PAPR. If SC-FDMA follows perfectly distributed subcarrier
mapping, y consists of the compression and repetition of sam-
ples x. If the maximum peak of the equivalent constellation
xTx1

equiv is doubled with respect to x, so will be the maximum
peak of the resulting signal. In localized subcarrier mapping,
the SC-FDMA modulation operation F−1

N QFM with, e.g.,
Q = [IM 0M×(N−M)]T, is completely equivalent to an
oversampling operation with factor N/M . The signal on Tx1

can be therefore expected to have a higher PAPR than the
signal on Tx0, since it is the result of oversampling of a signal
with higher dynamic range. Numerical simulations evaluating
the PAPR of SFBC will be presented in Section V.

III. ORTHOGONAL SINGLE-CARRIER SFBC FOR TWO
TRANSMIT ANTENNAS

In the previous section, we have shown that the use of STBC
is limited to data bursts composed of an even number of SC-
FDMA symbols and that classical SFBC performs frequency
shuffling P(J)

M which results in increasing the PAPR of the
equivalent constellation xTx1

equiv, and thus of the resulting SC-
FDMA signal transmitted on Tx1. Our purpose here is to
design a modified SFBC where we replace P(J)

M by a matrix
PM such that xTx1

equiv = F−1
M PMF−1

M · x∗
∆= Πx∗ has good

PAPR properties. We will proceed as follows:
• Find a matrix PM corresponding to an Alamouti-type

SFBC operation such that the PAPR of the equivalent
constellation xTx1

equiv is the same as the PAPR of the
original constellation x;

• Interpret the impact of the Alamouti-type SFBC opera-
tion sTx1 = PMsTx0∗ onto the time-domain equivalent
constellation xTx1

equiv and onto the frequency samples sTx1 ,
and prove that the operation PM leads to signals yTx0,1

exhibiting the same PAPR on both transmit antennas.
We are searching a matrix PM such as xTx1

equiv has the same
amplitude distribution as x, i.e., the following three sets have
the same elements:{∣∣∣xTx1

m,equiv

∣∣∣
m=0...M−1

}
=

{∣∣∣xTx0
m,equiv

∣∣∣
m=0...M−1

}
=

{
|xm|m=0...M−1

}
.

(18)
This condition ensures that the PAPRs of yTx0,1 have the

same upper bound. It is proven in Appendix A that:

PM = −S2p
M P̄(J)

M , (19)
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Fig. 3. SC-SFBC precoding; example for M = 8, 2p = 4.

where p is an integer parameter, corresponds to an
Alamouti-type operation in the frequency domain satisfying
(18). At sample level in the frequency domain, this gives:

sTx1
k = (−1)k+1s∗(2p−1−k) mod M , (k = 0...M − 1). (20)

We will call this space-frequency precoding ”single-carrier
SFBC” (SC-SFBC). In the sequel, we will denote by SC2p the
operation transforming sTx0 = s into:

sTx1 = PMs∗ ∆= SC2p(s). (21)

The SC2p operation takes the complex conjugates of a
vector s in reversed order, applies alternative sign changes
and then cyclically shifts down its elements by 2p positions.
This is depicted in Fig. 3. Alamouti-precoded pairs appear
onto non-adjacent frequency samples (k0, k1 = f(k0)), with
k0 even and:

f(k) = (2p− 1− k) mod M. (22)

Indeed, for the example presented in Fig. 3, Alamouti pre-
coding with matrix A(I)

01 is performed between the following
pairs (k0, k1) of frequency samples: (0,3), (2,1), (4,7), (6,5).
Eq. (11) still stands, but k0 and k1 are no longer consecutive.
Table II summarizes the differences between classical SFBC
and SC-SFBC precoding operations in the frequency domain.

Let us now investigate the properties of the equivalent
constellation generated by SC-SFBC precoding. xTx1

equiv is
determined by applying IDFT transform to (20):

xTx1
m,equiv = 1√

M

M−1∑
k=0

sTx1
k ω−kmM

= 1√
M

M−1∑
k=0

(−1)k+1︸ ︷︷ ︸
ω

M/2(k+1)
M

s∗(2p−1−k) mod Mω
−km
M

= 1√
M

M−1∑
k=0

s∗kω
−(2p−1)m+k(m+M/2)
M

= ω
−(2p−1)m
M x∗(m+M/2) mod M .

(23)
Equivalent constellation xTx1

equiv is obtained via complex
conjugation and phase shifts applied to the original constel-
lation points, but no amplitude modification is performed:
Design criterion (18) is obviously satisfied. Let us assume
that x is composed of Quaternary Phase-Shift Keying (QPSK)
symbols, for example. In this case, antenna Tx1 transmits an
SC-FDMA signal based on a M ′-PSK constellation where
M ′ = gcd(M, 2p − 1) (we have denoted by gcd(a, b) the
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greatest common divisor of the integers a and b). Let us
now analyze how SC-SFBC and the constellation rotation
introduced by it impact the PAPR of the transmitted signals.
In the case of perfectly distributed subcarrier allocation, where
yTx0,1 appears as the repetition of contracted xTx0,1

equiv sequence,
by expressing any n = 0...N − 1 with respect to its integer
quotient k and remainder r with respect to division by M , we
can state:

∣∣∣yTx1
n=km+r

∣∣∣ =
∣∣∣xTx1
r,equiv

∣∣∣ =
∣∣∣ω−(2p−1)m
M x∗(r+M/2) mod M

∣∣∣
=
∣∣∣x(r+M/2) mod M

∣∣∣ =
∣∣∣yTx0
km+(r+M/2) mod M

∣∣∣.
(24)

If the system follows localized subcarrier allocation with,
e.g., Q =

[
IM 0M×(N−M)

]T
, we obtain:

∣∣yTx1
n

∣∣ =

∣∣∣∣∣∣∣∣
1√
N

M−1∑
k=0

(−1)ks∗(2p− 1− k) mod M︸ ︷︷ ︸
→`

ω−knN

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1√
N

M−1∑̀
=0

ω
−(2p−1)n
N (−1)`︸ ︷︷ ︸

ω
`N/2
N

s∗`ω
`n
N

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
(

1√
N

M−1∑̀
=0

s`ω
−`(n+N/2)
N

)∗∣∣∣∣∣
=

∣∣∣yTx0∗
n+N/2

∣∣∣ =
∣∣∣yTx0
n+N/2

∣∣∣.
(25)

In amplitude, the samples to be sent on Tx1 are a reordering
of the samples to be sent on Tx0. yTx0,1 have strictly the same
amplitude distribution and therefore strictly the same PAPR.
We will say that SC2p is an SC-orthogonal operation, i.e.,
orthogonal and not causing any PAPR variation.

However, as a consequence of keeping the good PAPR
properties, SC-SFBC jointly encodes samples which may
be allocated to distant subcarriers. Specifically, precoding
is performed between non-adjacent samples k0 and k1 =
(2p− 1− k0) mod M . Thus, these samples might experience
rather different channel realizations and we can expect some
performance degradation with respect to conventional SFBC.
To minimize this degradation, we minimize the maximum
distance between frequency samples involved in the SC-SFBC
precoding by choosing 2p as close as possible to M/2.

IV. QUASI-ORTHOGONAL SC-SFBC FOR FOUR TRANSMIT
ANTENNAS

It was proven [17] that complex orthogonal designs of rate
one symbol per channel use do not exist for more than two
transmit antennas. Therefore, in order to keep rate one symbol
per channel use, we have to relax the orthogonality condition
and search for Quasi-Orthogonal (QO) codes that are compat-
ible with the SC-FDMA signal structure. Let us investigate
the Alamouti-extended codes introduced by Jafarkhani [18]
for systems with 4 transmit antennas. Employing such a code
in the time-dimension (QOSTBC) implies coding between

symbols on the same k-th subcarrier but coming from 4 time-
consecutive data blocks (e.g., s(4t)

k s
(4t+1)
k s

(4t+2)
k s

(4t+3)
k ). This

assumes that all uplink bursts contain a multiple of 4 SC-
FDMA symbols, which is difficult to meet in practice. Alter-
natively, if we use such a code in the frequency-dimension
as classical QOSFBC (i.e., precoding is applied within the
same SC-FDMA symbol among 4 adjacent frequency samples
s4ks4k+1s4k+2s4k+3), the frequency permutations involved
break the low-PAPR property of the signal and cause an
important PAPR degradation.

To preserve the framing compatibility of SF-type precoding
without causing any PAPR degradation, let us extend the
SC-SFBC precoding principle to the case of four transmit
antennas. First, in order to obtain a QO code, we need to
satisfy the following QO condition: For each sTxi , i = 0...3,
two out of the three precoded vectors sTxj , (j = 0...3, j 6= i
should be obtained via an orthogonal operation applied to sTxi .
Furthermore, in order not to degrade the PAPR, this orthogonal
operation must be PAPR-invariant. Since the SC2p operation
defined in (21) is both orthogonal and PAPR-invariant, we
will impose the following condition: For each sTxi , two out
of the three precoded vectors sTxj , (j 6= i; i, j = 0...3) should
be SC-orthogonal to sTxi , e.g., sTx0 and sTx2 are both SC-
orthogonal to sTx1 and to sTx3 , which gives:{

sTx1 = SC2p(sTx0) = SC2p′(sTx2)
sTx3 = SC2p′′(sTx0) = SC2p′′′(sTx2) . (26)

It is proven in Appendix B that this leads to p′ = p′′ =
p − M/4 and p′′′ = p. This results in precoding between
non-adjacent frequency samples sk0...3 , where k0...3 are given
below. Index k0 can be restricted to even values less than M/2
so that (k0, k1, k2, k3) sweeps the range 0...M − 1 without
index superposition: k1 = (2p− 1− k0) mod M

k2 = (k0 −M/2) mod M
k3 = (2p−M/2− 1− k0) mod M

, k0 <
M

2
, even.

(27)
Thus, by its own construction, this Single-Carrier QOSFBC

(denoted in the sequel by SC-QOSFBC) ensures SC-like PAPR
onto all transmit antennas. The solution is illustrated in Fig.
4. Note that by trying to extend the Alamouti-based code
described in Section III, we created a code based on one of
the Jafarkhani constructions given in [18] whose components
are mapped onto distant subcarriers. Indeed, SF precoding is
performed by choosing ai = ski , i = 0...3 with k0 even and
inferior to M/2, in:

A(I) =


a0 −a∗1 a2 −a∗3
a1 a∗0 a3 a∗2
a2 −a∗3 a0 −a∗1
a3 a∗2 a1 a∗0


← fk0
← fk1
← fk2
← fk3

↑ ↑ ↑ ↑
Tx0 Tx1 Tx2 Tx3

. (28)

The properties of the QO codes (28) were thoroughly
investigated in [19]- [20]. We would consequently expect SC-
QOSFBC to have similar performance, with a small penalty
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Fig. 4. SC-QOSFBC precoding, example for M = 12, 2p = 4;
(k0, k1, k2, k3) = {(0, 3, 6, 9), (2, 1, 8, 7), (4, 11, 10, 5)}.

with respect to conventional QOSFBC, which is due to precod-
ing samples to be transmitted onto non-adjacent subcarriers.

V. SIMULATION RESULTS

We consider a SC-FDMA system with N = 512 subcarriers,
among which 300 are active data carriers, to fit a bandwidth
of 5 MHz. To retrieve frequency diversity, groups of 12
SC-FDMA symbols with QPSK signal mapping are encoded
together with a rate-1/2 turbo code using the LTE interleaving
pattern [21]. A cyclic prefix with a length of 31 samples is
employed. We consider an uncorrelated Vehicular A 3GPP
MIMO channel [22] with 6 taps and a maximum delay spread
of 2.51 µs. 60 localized subcarriers are allocated to the same
user and two or four receive antennas are present at the base
station.

Note that Alamouti-based codes were introduced for nar-
rowband transmission with the assumption that the channel
does not vary between the two transmission periods. Ob-
viously, using these codes in the frequency domain causes
some degradation, because the channel frequency response
slightly varies from one subcarrier to another. On the other
hand, STBCs suffer from some degradation in the case of
high mobility users due to variations of the channel from
one symbol to the next. A good strategy in both cases is
to minimize the degradation by using an MMSE (Minimum
Mean Square Error) receiver instead of the MRC (Maximum
Ratio Combining) proposed by Alamouti. MMSE decoding
preserves the diversity order at the expense of some noise
enhancement [19]. In the simulations, we assume either perfect
channel knowledge, or real channel estimation. In this latter
case, the frame is composed of 2 slots, each slot being
composed of 6 SC-FDMA data symbols split in the middle by
one Zadoff-Chu pilot symbol. Channel estimation is performed

by frequency smoothing with an 11-tap Wiener filter, followed
by time-domain interpolation. Note that in order to allow
performance comparison, we used a frame in which the
number of SC-FDMA blocks is a multiple of 4 so that it is
compatible with both STBC and QOSTBC.

Let us define the Complementary Cumulative Distribution
Function (CCDF) of the Instantaneous Normalized Power
(INP) of a sequence of digital samples y:

CCDF(INP(y))(γ2) = Pr

 |yi|2

E
{
|y|2

} > γ2

 . (29)

This function gives the probability that the INP of a sample
yi exceeds a certain clipping level γ2. The CCDF of INP
takes into account all the samples of the signal and gives a
more accurate measurement of the influence of nonlinearity
than the largely employed CCDF of PAPR, which considers
only the largest peak of each block of samples [23]. In order
to correctly evaluate the INP of the transmitted signal, we
applied an oversampling factor of 4, which is reported in the
literature to be sufficient for an accurate signal description
after the nonlinearity [3].

Fig. 5 depicts the CCDF of INP of all the investigated
schemes for every transmit antenna. It also includes the CCDF
of INP of an equivalent OFDMA transmission, i.e., without
DFT precoding as a reference. For all precoding types, we
send the original SC-FDMA signal on the transmit antenna
Tx0. As expected, we can see that the proposed SC-SFBC
and SC-QOSFBC have very good PAPR performance and
preserve the SC nature of the SC-FDMA signal, just as STBC
and QOSTBC. On the other hand, as explained in section III,
the frequency manipulations involved by SFBC/QOSFBC lead
to an increased PAPR. The obtained waveform is a hybrid
signal with a PAPR higher than in SC-FDMA but lower
than in OFDMA. The amount of degradation depends on the
considered transmit antenna because of the different spectrum
manipulations involved. At a clipping probability of 10−4 for
example, we can lose up to 0.9 dB (resp. 1.3 dB) with classical
SFBC (resp. QOSFBC) with respect to a PAPR-invariant
precoding scheme. Note also by analyzing 28 and Table II
that we send the same signal on Tx1 when using classical
QOSFBC and SFBC, and the same PAPR performance is
achieved on Tx1. The advantage of our SC-SFBC and SC-
QOSFBC schemes illustrated in Fig. 5 is directly related to
the gain in terms of the amplifier back-off. Note that the
amplifier back-off in practical systems is often dictated by
the spectral mask rather than by in-band distortion, which
results from clipping. With the back-off needed to meet the
spectral mask requirements, in-band distortion is essentially
zero in coded systems and the SNR degradation is reduced
to the amplifier back-off. Consequently, the gain illustrated in
Fig. 5 is the SNR gain our proposed schemes will achieve
over conventional SFBC in the presence of a nonlinear power
amplifier due to their reduced PAPR.

Fig. 6 compares the performance of Alamouti-based trans-
mit diversity schemes in terms of Frame Error Rate (FER) for
the case of two transmit antennas. SFBC has similar perfor-
mance as STBC, since there is no significant channel variation
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between two adjacent subcarriers. Compared to SFBC, SC-
SFBC has a performance loss on the order of 0.3 dB at a target
FER of 1%, due to Alamouti precoding between non-adjacent
frequency samples. But since SFBC loses up to 0.9 dB in
terms of PAPR with respect to SC-SFBC or STBC, we can
conclude that SC-SFBC has better overall performance than
classical SFBC. The same relative behavior is reported for any
vehicular speed. Employing actual channel estimation causes
a loss for all schemes around 2.4 dB, due to the estimation
errors and to the energy spent by pilots. Note however that with
channel estimation errors, the additional degradation brought
by SC-SFBC is slightly masked and thus reduced as compared
to SFBC and STBC (0.15 dB).

In Fig. 7 we analyze the system performance at high vehic-
ular speeds (120 km/h) with real channel estimation. STBC,
which is more sensitive to Doppler shifts than the SFBC-based
techniques, is outperformed by SFBC (0.2 dB) and exhibits
similar performance to SC-SFBC. Since SC-SFBC benefits
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Fig. 7. Comparison with other open-loop diversity schemes: 120 km/h,
60 localized subcarriers, QPSK 1/2, MMSE decoding with real channel
estimation, 2 transmit antennas and 2 receive antennas.

from the advantages of both SFBC (high flexibility, robustness
at high vehicular speeds) and STBC (low PAPR), we conclude
that it is a very suitable technique when combined with SC-
FDMA. Results in [24], [25] presenting the performance of
such a system with conventional MRC and/or small number
of distributed subcarriers lead to the same conclusions. We
also compare here these two techniques with other simple
well-known transmit diversity techniques. CDD (Cyclic Delay
Diversity) [26] consists in splitting the signal after the N -
point IDFT between the two antenna branches: The original
SC-FDMA symbol is sent on Tx0, and the symbol on Tx1 is
cyclically shifted by a delay δ. This transforms a system with
multiple transmit antennas into an equivalent single transmit
antenna system. The transformed channel finds its frequency
selectivity increased as a result of the virtual echoes produced
by the CDD technique. We use here a CDD with δ = 128
samples. In Open-Loop Transmit Antenna Selection (OL-
TAS), diversity is achieved by switching between multiple
transmit antennas during the transmission of a coded data
frame, in the absence of channel state information at the
transmitter. With two transmit antennas, OL-TAS only needs
a single RF chain but is more vulnerable to high vehicular
speeds than its other counterparts: Because of the antenna
switching, each pilot will be used to estimate the channel
onto one slot, and no time interpolation can consequently be
employed between both slots of the same frame. Even if all
transmit diversity techniques show performance improvements
compared to single antenna transmission (referred to as Single
Input Multiple Output - SIMO 1x2 in the legend), we can see
that CDD and OL-TAS are outperformed by the Alamouti-
based techniques, by 0.5 dB and 1.2 dB, respectively.

The good behavior of the Alamouti schemes is confirmed
by Fig. 8, where performance of a 4-antenna system at 300
km/h with real channel estimation is shown. QOSFBC slightly
outperforms QOSTBC by 0.1 dB and SC-QOSFBC by 0.6 dB
when 2 Rx antennas are employed, but the potential PAPR
gain of SC-QOSFBC over QOSFBC is also higher in the 4-
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Tx-antenna case. Adding more Rx antennas diminishes the
relative loss between SC-QOSFBC and its counterparts.

VI. CONCLUSION

This paper has analyzed the implementation of Alamouti-
based transmit diversity schemes in a SC-FDMA system.
We have reviewed the advantages and limitations of ex-
isting schemes. First, we have shown that ST codes have
implementation-related limitations and that classical SF codes
suffer from PAPR degradation when combined with SC-
FDMA. Next, we have proposed a family of PAPR-invariant
mapping of space-frequency codes suitable for SC-FDMA
with two transmit antennas and we derived an extension of
this technique to four transmit antennas. This new mapping
of Alamouti-based SFBC shows good performance, overall
outperforming its classical SFBC counterpart. More flexible
than STBC, SC-SFBC and SC-QOSFBC seem to be very
suitable solutions to increase the coverage of SC-FDMA
systems.

APPENDIX A

We are searching a matrix PM satisfying the design cri-
terion (18). PM must be chosen such that an Alamouti-type
SFBC correspondence based on matrix A(I)

01 exists between
the elements of vectors sTx0 and sTx1 = PMsTx0∗. PM must
consequently be a skew symmetric matrix (PM = −PT

M )
with only one non-null element per row and per column. Let
us denote by P the class of skew symmetric matrices with
elements pm,n (m,n = 0...M − 1) in {−1, 0, 1}, containing
one single non-null element per column and per row in
position (k, f(k)). M must be even. Since PM has one single
non-null element per row and per column, it results that f is a
one-to-one transformation of the set {0...M−1}. If PM ∈ P ,
then −PM = PT

M ∈ P .
Let us define K0 (resp. K1) as the M/2 sized set of elements

k for which Pk,f(k) = −1 (resp. 1). Thus, if k ∈ K0 then

f(k) ∈ K1 because Pf(k),k = −Pk,f(k) = 1; also, f(f(k)) =
k because of the symmetry condition, and it will suffice to
define f onto the set K0. Without loss of generality, we can
choose K0 such as 0 ∈ K0. From (18) and the properties
of PM , we deduce that Π = F−1

M PMF−1
M should perform a

permutation of the elements in x, possibly accompanied by
some phase rotation. Π should consequently belong to the
class Π of matrices having only one non-null element of type
ejξ per row and per column, ξ ∈ [0, 2π). Π is also skew
symmetric and thus all the elements on its main diagonal are
null. We are consequently searching for PM ∈ P such as
Π = F−1

M PMF−1
M ∈ Π . For classical SFBC for example we

can easily see from (15) that F−1
M P(J)

M F−1
M is not in Π even

if P(J)
M is in P . Let us show that this problem has solutions.

We can compute:

Πm,n =
M−1∑
k=0

ω−mk
M√
M

(
M−1∑̀

=0

Pk,`
ω−`n

M√
M

)
= 1

M

M−1∑
k=0

ω−mkM

(
Pk,f(k)ω

−nf(k)
M

)
= 1

M

∑
k∈K0

(
Pk,f(k)ω

−mk−nf(k)
M + Pf(k),kω

−mf(k)−nk
M

)
= 1

M

∑
k∈K0

(
−ω−(mk+nf(k))

M + ω
−(mf(k)+nk)
M

)
= 1

M

∑
k∈K0

(
ω
−(mk+nf(k)+M/2)
M + ω

−(mf(k)+nk)
M

)
,

m, n = 0...M − 1.
(30)

Let Π0,n0 6=0 = ejξ0 be the only non-null
element on the first row. Since Π0,M−n0 =
1/M

∑
k∈K0

(
−ω−n0f(k)

M + ω−n0k
M

)
= Π∗0,n0

6= 0, we deduce
n0 = (M − n0) mod M . Since n0 is not null, n0 = M/2.
But Π0,M/2 = 1/M

∑
k∈K0

[
(−1)k − (−1)f(k)

]
= ejξ0 is

real, thus it can take as values either 1 or -1: either all
elements in K0 are even and all elements in K1 = f(K0) are
odd, or vice versa. As we have chosen 0 ∈ K0 by convention,
we conclude that Π0,M/2 = 1 and K0 = {0, 2, . . . ,M − 2}
contains even integers only. Note that choosing 0 ∈ K1

instead would simply lead to changing the sign of PM

and trying to find solution −PM instead of PM . Let us
apply inequality (I2) to (30). This leads to |Πm,n| ≤ 1.
But since Π ∈ Π already implies that |Πm,n| ∈ {0, 1}, we
deduce that for all the non-null elements of Π the equality
conditions of (I2) must be satisfied and thus all elements in
the right-hand part of (30) must have the same argument. For
any m = 0...M − 1, uniquely exists (∃!)n 6= m such that for
any k even all elements in the right-hand part of (30) have
the same argument (constant with respect to m), let us denote
it λm. Mathematically, this means:

∀m,∃!n 6= m such that ∀k ∈ K0,

(mk + nf(k) +M/2) mod M λm= (mf(k) + nk) mod M.
(31)

This implies that [(k − f(k))(m− n)] mod M = M/2 and
thus (k − f(k))(m − n) = (2qk + 1)M/2, where qk is an
integer depending on k. Let us concentrate on the particular
case where M is a power of 2. Given that k − f(k) is always
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odd (k ∈ K0 and f(k) ∈m athcalK1), must equal M/2. On
each line m the non-null element in Π must be on the column
n = (m + M/2) mod M . Taking m = 1 (and implicitly
n = M/2 + 1) in (31), we find that, for any k ∈ K0,
(f(k) + k +Mk/2) mod M

keven= (f(k) + k) mod M = λ1.
Thus, k+ f(k), independent from m, is a constant odd integer
(modulo M ) for any k, let it be λ1 = 2p − 1 with p integer.
We can thus write:

f(k) = (2p− 1− k) mod M, ∀k even. (32)

From (32) we can deduce matrix PM with elements -1 in
position (k, f(k)) and 1 in position (f(k), k):

PM =



2p elements︷ ︸︸ ︷
02×2 −J

. . .

−J 02×2

02p×(M−2p)

0(M−2p)×2p

02×2 −J
. . .

−J 02×2︸ ︷︷ ︸
M−2p elements


= −S2p

M P̄(J)
M .

(33)
With this choice, we can compute the elements of Π:

Πm,n = 1
M

M/2−1∑
k=0

(
ω
−(2mk+n(2p−1−2k))−M/2
M

+ ω
−m(2p−1−2k)−2nk
M

)
= ω

−n(2p−1)−M/2
M

M

M/2−1∑
k=0

ω
−2(m−n)k
M

+ω
−m(2p−1)
M

M

M/2−1∑
k=0

ω
2(m−n)k
M .

(34)

Both geometric series here-above sum to M/2 when
(2(m− n)) mod M = 0, and to 0 otherwise. Since Πm,n = 0
for any m = n, we can only obtain non-null elements when
(m− n) mod M = M/2, which gives:

Πm,n =
{
ω
−(2p−1)m
M , n = (m+M/2) mod M

0, otherwise.
(35)

The design criterion (18) is consequently satisfied and
PM = ±SpM P̄(J)

M leads to a mapping conserving the am-
plitude distribution of the original constellation. Let us note
that (33) verifies the design criterion for any even value of M ,
since (34) and (35) remain valid when M is not a power of
2. This is not sufficient to state that (33) is the only solution
when M is not a power of 2, and other solutions might exist.
Nevertheless, in the case M = 12 which is typical in LTE, we
have verified that no other solutions exist.

APPENDIX B

Let (k0, k1, k2, k3) be a set of four indices ki denoting
subcarriers encoded together. We concentrate here only on the
index of the used frequency samples (±s(∗)

k0
will be represented

by k0). Let us analyze Table III, describing the relationships
between the signals sent onto different antennas. To create a
valid code, the table must only contain elements from the set
(k0, k1, k2, k3), each element being present once on each line
and each column of the table. During the transmission of an
arbitrary k0 on Tx0, due to the relationships between antennas,
k3 sent on Tx3 can be expressed in two manners,k3 =
2p′′′− 2p′+ 2p− 1−k0 and k3 = 2p′′− 1−k0, which means
that 2(p′′′−p′) = 2(p′′−p). During the transmission of k1 on
Tx0, 2p−1−k1 = k0 is sent on Tx1. On Tx2 the only choice
is to send k3, which means that 2p′ − 1− k0 = 2p′′ − 1− k0

and thus 2p′ = 2p′′. Similarly, we can deduce 2p = 2p′′′. It
follows that 2 ·2p = 2 ·2p′. But 2p cannot equal 2p′ (it would
mean that signals on Tx0 and Tx2 are equal), and since the
equality is written modulo M , 2p = 2p′ ±M/2.
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