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Abstract—We consider the transmission of a common message
from a transmitter to two receivers over a broadcast channel,
also called a multicast channel in this case. The two receivers
are allowed to cooperate with each other in full-duplex over
non-orthogonal cooperation links. We investigate the information-
theoretic upper and lower bounds on the broadcast rate. In par-
ticular, we propose a two-round cooperation scheme in which the
receivers interactively perform compress-forward (CF) and then
decode-forward (DF) to improve the achievable rate. Numerical
results compare the proposed scheme to existing schemes and
the cutset upper bound in the Gaussian case. We show that
the proposed scheme outperforms the non-interactive DF and
CF schemes as well as the noisy network coding scheme. The
gain over the DF scheme becomes larger when the main channel
becomes symmetric, while the gain over the CF scheme becomes
larger when the main channel becomes asymmetric.

I. INTRODUCTION

The increase of multimedia content delivery in wireless
communication systems is leading, among many, to a spectrum
crunch or interference intensification. In traditional broad-
casting systems such as digital video broadcasting through
satellite (DVBS), the same content is intended to a group
of users. Multilayer strategies are often used so that the
transmission rate is not limited by the worst user in terms
of channel quality. However, if all users wish to obtain the
same content quality, the worst user would set the rate and
thus impact the whole group. With the recent study of device-
to-device mechanisms in standards, user cooperation in close
proximity becomes possible and would benefit all the users.

In this work, we investigate the broadcast channel (BC) with
one transmitter sending a common message to two receivers,
also called a multicast channel (MC) in this case. The receivers
can cooperate through a cooperation link. The goal is to
characterize the benefit of cooperation in terms of achievable
broadcast rate through an information-theoretic analysis. Since
the receivers also transmit signals through the cooperation link,
our channel is a mixture of the BC and the relay channel (RC).

BCs were introduced in [1]. The capacity of BCs remains
unknown except for special cases such as the stochastically
degraded BC [2] for which superposition coding is optimal.
The largest achievable rate-region known to date for the
general case is based on binning [3]. RCs were introduced
in [4]. The compress-forward (CF) and decode-forward (DF),
fundamental relaying strategies, were proposed in [5]. Relay-
ing strategies based on CF and DF were proposed for larger

networks [6]–[9]. The capacity of the BC with cooperation
is unknown in general, except for special cases such as the
physically degraded main channel. The setup of the current
work has been partially studied in [10], referred to as BCs
with cooperative decoders, and in [11], [12], referred to as
relay BCs. A BC with orthogonal cooperation links was
considered in [10]. In [11], [12], although the cooperation
links are not restricted to be orthogonal, the authors assumed
that either the main channel is degraded or the cooperation
link is uni-directional. It is worth noting that achievable rate
regions of both common and private messages were provided
in [10]–[12]. Although distributed decode-forward [13] seems
promising, its bound is hard to evaluate due to the high number
of parameters to optimize. For this reason, it is not considered
in our paper.

Unlike previous works, we study a general MC with a bi-
directional non-orthogonal cooperation link. First, we present
for our channel the cutset upper bound and four lower bounds
derived from existing results in the literature. Two of the non-
interactive schemes are, 1) the one-sided cooperation scheme
where the “strongest” receiver decodes the message first and
then serves as DF relay to help the “weakest” receiver decode,
and 2) the one-round cooperation scheme where the users
serve as CF relay to help each other decode. Then a new two-
round interactive cooperation scheme is proposed as the main
result of our paper. In this scheme, one receiver first relays the
received signal using CF to help the other one decode during
the first round, which in turn relays back side information on
the decoded message during the second round to help the first
one decode. The proposed scheme is based on block Markov
superposition coding, contrary to [10]–[12].

Sec. II introduces the system model and the Single-Input
Single-Output (SISO) Gaussian MC as a special case. Sec. III
presents existing upper and lower bounds. In Sec. IV, we
detail the proposed scheme and show that it surpasses existing
schemes regarding the achievable rate. Numerical results are
provided in Sec. V for the SISO Gaussian MC, and the
Multiple-Input Single-Output (MISO) Gaussian MC intro-
duced in Sec. IV. We show that the gain of the proposed
scheme over the one-sided scheme is larger when the main
channel becomes symmetric while the gain over the one-round
scheme (as well as the noisy network coding scheme [7]) is
larger when the main channel becomes asymmetric. In the



symmetric MISO case the proposed scheme strictly outper-
forms the one-round scheme while they were equal in the
SISO counterpart.

II. SYSTEM MODEL

We consider a simple multicast network where one trans-
mitter sends the same information to two receivers through
the main channel. The two receivers can cooperate with
each other in full-duplex, i.e., they can transmit and receive
simultaneously, through a bi-directional non-orthogonal co-
operation link. This setup includes, 1) the cooperation links
orthogonal to the main channel, orthogonal links being either
physically separated medium, e.g., using different transmission
technologies over different resources, or created with artificial
orthogonalization, e.g., in time or frequency and, 2) the half-
duplex mode if the receivers transmit and receive at a different
time. To derive upper and lower bounds on the achievable
rate, we resort to information theory. The current channel
belongs to a class of stationary memoryless channels shown
in Fig. 1, (X ×X1×X2, p(y1, y2|x, x1, x2),Y1×Y2), defined
as p(yn1 , y

n
2 |xn, xn1 , xn2 ) =

∏n
i=1 p(y1i, y2i|xi, x1i, x2i) where

xn ∈ Xn, xn1 ∈ Xn1 , and xn2 ∈ Xn2 are the sequences of
transmitted signals from the transmitter, receiver 1 and 2,
respectively, and yn1 ∈ Yn1 and yn2 ∈ Yn2 are the sequences
of received signals at the receivers 1 and 2, respectively.
The probability distribution of the channel is known at every
node (perfect channel state information (CSI) at the transmitter
and receivers) by assumption. The common message M is
assumed to be uniformly distributed in M , [1 : 2nR]
where R is the number of bits per channel use. An encoder
at the transmitter side is a map f

(n)
i from the message M

to the sequence of input symbols xn, an encoder at the
receiver k, k = 1, 2, is a sequence of maps {f (n)k,i }i from the
past received symbols yi−1k to the transmitted symbol xk,i. A
decoder at the receiver k is a map {g(n)k,i }i from the received
sequence ynk to M̂ (k) ∈M. The probability of error is defined
as P (n)

e , Pr(M 6= M̂ ′ or M 6= M̂ ′′). Finally, a rate R
is achievable if there exist a sequence of encoders/decoders(
f
(n)
i , {f (n)1,i }i, {f

(n)
2,i }i, {g

(n)
1,i }i, {g

(n)
2,i }i

)
such that P (n)

e → 0

when n→∞. Note that we obtain an orthogonal channel if,
1) we split Yk = Ym

k ×Yc
k, 2) we split Y1 = (Y m

1 , Y
c
1 ), Y2 =

(Y m
2 , Y

c
2 ) with Y m

k ∈ Ym
k , Y

c
k ∈ Yc

k, k = 1, 2, and 3) we have

p(y1, y2|x, x1, x2) = p(ym
1 , y

m
2 |x)p(yc

1|x2)p(yc
2|x1), (1)

i.e., the received signals from the main channel are inde-
pendent of the received signals from the cooperation links.
The information-theoretic bounds derived under those general
classes of channels can be specialized for any stationary
memoryless channels compliant to the corresponding require-
ments. We decided to derive the bounds for the Gaussian
MC (Gaussian inputs and noises) as a special case of the

M TX
Xn

Y n
1 RX 1

Xn
1

M̂ ′

Y n
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RX 2

Xn
2

M̂ ′′

PY1,Y2|X,X1,X2

Fig. 1: The MC with receiver cooperation.

class of non-orthogonal stationary memoryless channels. The
received signal at an instant i is written as

y1[i] =h1x[i] + h21x2[i] + z1[i], (2)
y2[i] =h2x[i] + h12x1[i] + z2[i] (3)

where the transmitted signals are subject to the same aver-
age power constraint

∑n
i=1 |x[i]|2 ≤ nP,

∑n
i=1 |xk[i]|2 ≤

nPk, k = 1, 2, i.e., P1 = P2 = P , and the additive
white Gaussian noises (AWGN) zk[i] ∼ CN (0, σ2) are
independent across resources and receivers by assumption.
The signal-to-noise ratios of the main channels are SNRk =
|hk|2 Pσ2 , k = 1, 2, and those of the cooperative links are
SNRkl = |hkl|2 Pσ2 , k 6= l ∈ {1, 2}. Note that in the above
model, self-interference is not considered at the receivers,
i.e., it can be removed using the perfect CSI assumption.
In practice, self-interference could be dealt with by data
processing or resource decoupling.

III. EXISTING UPPER AND LOWER BOUNDS

In the following, we present the cutset upper bound, and
four lower bounds readily derived from existing schemes in
the literature. Proofs are omitted and the readers are referred
to [14], [15] for details.

A. Cutset Upper Bound

According to the cutset upper bound [15, Th. 18.1], the
capacity of the channel is upper bounded by

C ≤ RCS , max
p(x,x1,x2)

min{I(X;Y1, Y2|X1, X2),

I(X,X2;Y1|X1), I(X,X1;Y2|X2)}. (4)

The capacity cannot be larger than any of those three cases,
1) both receivers cooperate perfectly to decode the source
message, i.e., I(X;Y1, Y2|X1, X2), 2) the transmitter and re-
ceiver 2 cooperate perfectly to send the message to receiver 1,
i.e., I(X,X2;Y1|X1), and 3) same for receivers 1 and 2
exchanging roles. The maximization is performed over all
possible input distributions p(x, x1, x2), since the cooperation
is assumed to be perfect in the upper bound.

B. No Cooperation

A natural lower bound is obtained by ignoring the cooper-
ation link, it is in fact the capacity of a compound channel

C ≥ RNC , max
p(x)p(x1)p(x2)

min{I(X;Y1|X1, X2),

I(X;Y2|X1, X2)}. (5)



C. One-Sided Cooperation

We can obtain another lower bound when one of the coop-
eration links is ignored, e.g., receiver 1 does not exploit the
presence of the other and always decodes the source message
first. After decoding each message, receiver 1 and the source
can cooperatively send the message to receiver 2, through
the main channel and the cooperation link. The achievable
rate in this case is similar to the one of a conventional DF
scheme [5], [15] when receiver 1 is considered as relay, i.e.,
min {I(X;Y1|X1), I(X,X1;Y2|X2)}. Note that the coopera-
tion between the transmitter and receiver 1 is possible after the
latter decodes the message, thus the rate can be maximized
over all possible p(x, x1)p(x2). Same for receivers 1 and 2
exchanging roles. Finally, we maximize the following lower
bound by choosing the decoding order that gives a higher rate.

C ≥ R1SC , max
k 6=l

max
Pl→k

min{I(X;Yl|Xk, Xl),

I(X,Xl;Yk|Xk)} (6)

where Pl→k is the set of distributions p(x, xl)p(xk). Note
that the short message noisy network coding with DF op-
tion (SNNC-DF) [8, Th. 2] is designed for the unicast over a
cooperative network in which relays can use either quantize-
forward (QF) or DF. Since we consider a MC, the DF option of
the SNNC-DF has to be forced otherwise one receiver would
not be able to decode the message in general. This gives an
identical bound by taking the maximum of two SNNC-DFs
where receivers 1 and 2 exchange roles.

D. Two-Sided One-Round Cooperation

To exploit both cooperation links, a simple scheme based on
CF scheme [5], [15] works as follows. Both receivers compress
simultaneously and independently their own observations and
then send the compression index to the other receiver using
the cooperation links. In other words, each receiver acts as a
CF relay to the other receiver.

C ≥ R1RC , max
P

min
k 6=l

min
{
I(X;Yl, Ŷk|Xk, Xl),

I(X,Xk;Yl|Xl)− I(Yk; Ŷk|X,Xk, Xl, Yl)
}

(7)

where P is the set of conditional distribution
p(x)p(x1)p(x2)p(ŷ1|x1, y1)p(ŷ2|x2, y2) with |Ŷk| ≤
|Xk||Yk| + 1, k = 1, 2. For brevity, we also refer to
this scheme as one-round cooperation scheme.

E. Noisy Network Coding

Finally, we can apply the noisy network coding (NNC)
scheme [7, Th. 1] and obtain the following lower bound.

C ≥ RNNC , max
P

min
k 6=l

min
{
I(X;Yl, Ŷk, Ŷl|Xk, Xl),

I(X,Xk;Yl, Ŷl|Xl)− I(Yk; Ŷk|X,Xk, Xl, Yl, Ŷl)
}

(8)

where P is the set of conditional distributions
p(x)p(x1)p(x2)p(ŷ1|x1, y1)p(ŷ2|x2, y2) with |Ŷk| ≤
|Xk||Yk| + 1, k = 1, 2. In this scheme, the same long

message (high rate) is sent using independent codebooks in
each block, and then each receiver uses QF, i.e., quantizes the
observation and relays the description in the next block. The
message is decoded only at the end of the whole transmission
at both receivers. Note that the short message noisy network
coding (SNNC) [8, Th. 1], in which the long message is
cut into small independent ones each sent using independent
codebooks in each block gives an identical bound.

Remark 1. Note that the NNC and the one-round co-
operation lower bounds coincide by applying the Markov
chain (X,Xk) ↔ (Xl, Yl) ↔ Ŷl, k 6= l on the right-hand
side of (8) to obtain (7). A similar result arises in the three-
node RC where the NNC reduces to the CF [15, Rmk. 18.5].
Intuitively, the multi-round cooperation introduced by the
NNC scheme cannot improve over the one-round cooperation
scheme in a two-receiver channel, since the receivers do not
benefit from the multi-round compression which is not better
than one-round compression. The same conclusion does not
hold when the network has more than two receivers.

Due to the same achievable rate, we do not distinguish be-
tween the one-round cooperation and NNC schemes hereafter.

IV. PROPOSED COOPERATION SCHEME

In this section, we propose a two-round interactive coopera-
tion scheme. In a nutshell, the first round corresponds to a CF
cooperation, for receiver k to help receiver l decode, and the
second round corresponds to a DF cooperation, for receiver l
to help receiver k decode. The main result of this work is the
following proposition.

Proposition 1. With the two-round interactive cooperation
scheme, we achieve the following lower bound

C ≥R2RC

,max
k 6=l

max
Pk↔l

min
{
I(X,Xl;Yk|Xk), I(X;Yl, Ŷk|Xk, Xl),

I(X,Xk;Yl|Xl)− I(Yk; Ŷk|X,Xk, Xl, Yl)
}

(9)

where Pk↔l is the set of conditional distributions
p(x, xl)p(xk)p(ŷk|xk, yk) with |Ŷk| ≤ |Xk||Yk|+ 1.

Remark 2. Note that a time-sharing random variable can
be added to improve further the rate in all the information
theoretic bounds presented in this paper.

We explain the proposed scheme with the help of Fig. 2.
Due to the space restrictions, the formal proof will be provided
in the full version of the paper, and the formal setup is in the
Appx. Our scheme is based on block Markov superposition
coding. Without loss of generality, we assume that receiver 1
performs CF to help receiver 2 decode first. In each block b,
the transmitter sends a codeword as a function of the current
message mb and the past message mb−2 (with two blocks
of delay). Upon the reception of Y1,b, receiver 1 performs
a compression and obtains a description Ŷ1(kb|lb−1) using a
source codebook indexed by lb−1. The index of the description
kb is further compressed into lb using a binning procedure. The



compressed index lb is then sent during the next block b + 1
through the cooperation link to receiver 2, with receiver 1’s
codebook. At the end of block b+1, receiver 2 jointly decodes
the compression index lb from Y2,b+1 to get side information
about Y1,b and its own observation Y2,b to decode mb as
m̂′′b . The first round cooperation is complete. It is almost
the same as the CF scheme with receiver 1 as relay and
receiver 2 as destination, except that in this case receiver 2
is also transmitting constantly. One can show that m̂′′b = mb

with high probability if the rate satisfies

R ≤ min
{
I(X;Y2, Ŷ1|X1, X2),

I(X,X1;Y2|X2)− I(Y1; Ŷ1|X,X1, X2, Y2)
}

(10)

as in the CF scheme [15, Th. 16.4], except for the conditioning
on the transmitted signals X1 and X2 of receivers 1 and 2.

The second round cooperation related to mb starts once
receiver 2 recovers mb at the end of block b + 1. The side
information on mb is sent during the next block b+ 2 through
the cooperation link to receiver 1, with receiver 2’s codebook.
Meanwhile, the source sends the new mb+2 using a codebook
indexed by mb, i.e., the codewords sent by the source and
receiver 2 are correlated. At the end of block b+ 2, receiver 1
simultaneously decodes the two observations that are related
to mb, namely, Y1,b and Y1,b+2 to decode mb as m̂′b. One can
show that m̂′b = mb with high probability if the rate satisfies

R ≤ I(X,X2;Y1|X1) (11)

as if the source and receiver 2 form a virtual transmitter to
send the message to receiver 1. Therefore, for both receivers
to decode mb successfully with high probability, both (10)
and (11) should be satisfied. Same for receivers 1 and 2
exchanging roles. Finally, we maximize the following lower
bound by choosing the decoding order that gives a higher rate
from which we obtain the rate given in Prop. 1.

Remark 3. Note that the proposed scheme has low latency
(two blocks for the weakest user) since receiver 1 uses sliding
window decoding, instead of high latency (wait until the last
block for the weakest user) if it used backward decoding, and
that both decoding procedures give identical performances.

Corollary 1. The proposed scheme outperforms both the one-
sided and one-round cooperation schemes,

RCS ≥ R2RC ≥ R1SC ≥ RNC, and (12)
RCS ≥ R2RC ≥ R1RC = RNNC ≥ RNC. (13)

Proof. We show that the proposed scheme is at least as good
as the one-sided scheme by restricting Ŷk, k = 1, 2, to be
independent of (Xk, Yk) in Pk↔l, thus R2RC in (9) reduces to
R1SC in (6). By rewriting (7) for the one-round cooperation as

max
P

min
{
I(X;Yl, Ŷk|Xk, Xl), I(X;Yk, Ŷl|Xk, Xl),

I(X,Xk;Yl|Xl)− I(Yk; Ŷk|X,Xk, Xl, Yl),

I(X,Xl;Yk|Xk)− I(Yl; Ŷl|X,Xk, Xl, Yk)
}
, (14)

B

D1

D2

C

block b+1 block b+2block b

Tx sends

Rx2

sends

receives

decodes

sends

receives

decodes

compresses

Rx1

X2(m̂
00
b�2)

m̂00
b

X2(m̂′′b )X2(m̂
00
b�1)

Fig. 2: Illustration of the proposed scheme in strategy
STG1→2→1. The encoding and decoding related to the mes-
sage mb are in blue. Solid arrows represent encoding and
dashed arrows decoding. Square blocks B, C, D1, D2 stand
for “binning”, “compression”, “decoder 1”, and “decoder 2”.

it is readily shown that each term in the minimization on the
right-hand side of (9) is larger than at least one term in (14).
By restricting p(x, xl) = p(x)p(xl) in Pk↔l, we finally show
that a lower bound of (9) is larger than (7).

From Prop. 1, we obtain the following rate when the
cooperation links are orthogonal to the main channel as in (1).

Corollary 2 (Orthogonal cooperation links). The proposed
scheme achieves the following lower bound in a MC with
orthogonal cooperation links

Rortho
2RC , max

k 6=l
max
Po

k↔l

min
{
I(X;Y m

k ) + Cl,k, I(X;Y m
l , Ŷk),

I(X;Y m
l )− I(Y m

k ; Ŷk|X,Y m
l ) + Ck,l

}
(15)

where Pok↔l is the set of distributions p(x)p(ŷk|ym
k ) with

|Ŷk| ≤ |Ym
k | + 1, and Cl,k , maxp(xl) I(Xl;Y

c
k ) is the

capacity of the cooperation link from receiver l to receiver k.

Proof. From the definition in (1), we have

I(X,Xl;Yk|Xk) = I(X;Y m
k ) + I(Xl;Y

c
k ) (16)

I(X;Yl, Ŷk|Xk, Xl) = I(X;Y m
l , Ŷk) (17)

I(X,Xk;Yl|Xl)− I(Yk; Ŷk|X,Xk, Xl, Yl)

= I(X;Y m
l ) + I(Xk;Y c

l )− I(Y m
k ; Ŷk|X,Y m

l ) (18)

which follows directly from the independence between
(X,Y m

1 , Y
m
2 , Ŷ1, Ŷ2) and (X1, X2, Y

c
1 , Y

c
2 ). We obtain (15) by,

1) maximizing separately I(Xk;Y c
l ) and I(Xl;Y

c
k ), which is

possible because each term only depends on its own input
distribution, and 2) maximizing the rest of the terms by letting
X be independent of Xl in Pok↔l, which is without loss of
optimality since these terms do not depend on Xl given X .

Remark 4. Note that under the same setting, the rate (15)
coincides with the one derived in [10]. It is worth mentioning



that the coding techniques in both works are conceptually
different. Our results are based on the block Markov su-
perposition coding aiming for the general non-orthogonal
cooperation links whereas the schemes in [10] are based on
separated coding only suitable for orthogonal cooperation
links.

Corollary 3 (Gaussian channel). The proposed scheme
achieves the following lower bound expressed explicitly from
Prop.1 in a Gaussian MC with non-orthogonal cooperation
links

RGauss
2RC , max

k 6=l
max
ρ∈[0,1]

min

{
log(1 + SNRk + SNRlk + 2

√
SNRkSNRlkρ),

log

(
1 +

(
SNRl +

SNRk
1 + ∆∗k(ρ)

)
(1− ρ2)

)}
(19)

where ∆∗k(ρ) , 1+(SNRk+SNRl)(1−ρ2)
SNRkl

.

Proof. We let (X,Xl) ∼ CN (0,Q) and Xk ∼ CN (0, P ) be
independent, with

Q , P

[
1 ρejθ

ρe−jθ 1

]
, ρ ∈ [0, 1], θ ∈ [0, 2π), (20)

Ŷk = Yk + Nk with Nk ∼ CN (0,∆k), k = 1, 2, being
the compression noise. We follow three steps to obtain the
expression in (19). First, we apply (9) with the above distri-
butions. Then, we optimize over θ according to the phases of
the channel coefficients. Finally, we maximize over ∆k ≥ 0
for a given ρ and obtain the optimal value of ∆k as ∆∗k(ρ).

We further consider the MISO 2×1 Gaussian MC case with
the following signal model at an instant i

y1[i] =hhhT
1xxx[i] + h21x2[i] + z1[i], (21)

y2[i] =hhhT
2xxx[i] + h12x1[i] + z2[i] (22)

where hhh1,hhh2 ∼ C2×1 are the channel vectors from the
transmitter to, respectively, the receiver 1 and 2, hkl ∼ C, k 6=
l ∈ {1, 2} is the channel gain from receiver k to receiver l,
and zk ∼ CN (0, σ2), k = 1, 2 are the AWGNs independent
across resources and receivers by assumption. Note that as
in the SISO case, all channel coefficients are assumed to be
known and remain constant during the transmission, and that
self-interference is not considered at the receivers. Assume that
the transmitted signals are subject to the same average power
constraint

∑n
i=1 |xxx[i]|2 ≤ nP,

∑n
i=1 |xk[i]|2 ≤ nP, k = 1, 2.

For simplicity, we fix the channel coefficients

hhhT
1 =

[√
SNR1σ2

2P

√
SNR1σ2

2P

]
(23)

hhhT
2 =

[√
SNR2σ2

2P −
√

SNR2σ2

2P

]
(24)

hkl =

√
SNRklσ2

P
, (25)

where σ2 is discarded afterward in the channel coefficients
since it appears in the SNRs’ denominator, and by considering

normalized SNRs. For the proposed scheme, we let (XXX,Xl) ∼
CN (0,Q) and Xk ∼ CN (0, P ) be independent, with

Q ,P

[
QXXX QXXX,Xl

QXXX,XlQXXX,Xl

QXXX,Xl
QXXX,XlQXXX,Xl

H P

]
� 0 (26)

QXXX|[XlXk] =QXXX|Xl
= QXXX −QXXX,Xl

QXXX,XlQXXX,Xl
P−1QXXX,Xl

QXXX,XlQXXX,Xl

H � 0. (27)

Note that Q � 0 is equivalent to QXXX|Xl
� 0 and P ≥ 0

since QXXX|Xl
is the Schur complement of P in Q. It follows

that Q is uniquely determined by QXXX|Xl
,QXXX,Xl
QXXX,XlQXXX,Xl

, and P . The
matrices are parametrized as follows without loss of generality

QXXX|Xl
=

[
A

√
Cejθ1

√
Ce−jθ1 B

]
� 0 (28)

QXXX,Xl
QXXX,XlQXXX,Xl

=
√
D

[
uejθ2
√

1− u2

]
, (29)

where A,B,C,D ≥ 0, u ∈ [0, 1], and θ1, θ2 ∈ [0, 2π). Note
that QXXX,Xl

QXXX,XlQXXX,Xl
/
√
D is a unit vector, and that the eigenvalues of

QXXX|Xl
are non-negative if and only if AB ≥ C. Then

QXXX = QXXX|Xl
+QXXX,Xl
QXXX,XlQXXX,Xl

P−1QXXX,Xl
QXXX,XlQXXX,Xl

H � 0, (30)

and satisfy the power constraint Tr(QXXX) ≤ P which implies

A+B +
D

P
≤ P. (31)

It can be further shown that assuming the equality in (31)
does not bring loss of optimality. The compression noise is
Ŷk = Yk +Nk with Nk ∼ CN (0,∆k), k = 1, 2.

Corollary 4 (MISO Gaussian channel). The proposed scheme
achieves the following lower bound expressed explicitly from
Prop. 1 in a MISO 2 × 1 Gaussian MC with non-orthogonal
cooperation links

RMISO Gauss
2RC , max

k 6=l
max

Q�0,Tr(Q)≤2P

min

{
log(1 + κk), log

(
1 + γl +

γk + γm

1 + ∆∗k

)}
(32)

where ∆∗k(A,B,C, θ1) , 1+γk+γl+γm
κl−γl , with

κl =(A+B ± 2
√
C cos(θ1))

SNRl
2P

+ SNRkl (33)

κk =(P ∓ 2
√
C cos(θ1)

∓ 2(P − (A+B))u
√

1− u2 cos(θ2))
SNRk
2P

+ SNRlk+

2
√
P − (A+B)(u cos(θ2)∓

√
1− u2)

√
SNRkSNRlk

2P
(34)

γl =(A+B ± 2
√
C cos(θ1))

SNRl
2P

(35)

γk =(A+B ∓ 2
√
C cos(θ1))

SNRk
2P

(36)

γm =4(AB − C)
SNRlSNRk

4P 2
. (37)

Proof. Under the considered setup of the MISO 2 × 1, we
follow two steps to obtain the expression in (32). First,



we apply (9) with the corresponding distributions. Then, we
maximize over ∆k ≥ 0 for a given tuple (A,B,C, θ1) and
obtain the optimal value of ∆k as ∆∗k(A,B,C, θ1).

In Cor. 4, the upper sign of the plus-minus signs correspond
to STG2→1→2 and the lower sign to STG1→2→1 due to (23)
and (24), and the constraints are summarized as follows

A,B,C ≥ 0, AB ≥ C,A+B ≤ P (38)
D = P (P − (A+B)) (39)
u ∈ [0, 1], θ1, θ2 ∈ [0, 2π). (40)

V. NUMERICAL RESULTS

In this section, we first focus on the SISO Gaussian MC
as defined in (2) and (3), and evaluate through numerical
simulations the achievable rate of the proposed scheme given
in (19), as well as the rate bounds provided in Sec. III. Note
that to provide a fair comparison the parameters such as input
correlation and compression noise variance are optimized for
each bound. We study the impact of the cooperation link on
the throughput of the channel. We assume that the SNR of
the cooperation links is symmetric, i.e., SNR12 = SNR21 =
SNRcoop. In Fig. 3, we fix the SNR of the main channel, and
plot the throughput in terms of spectral efficiency (bit/s/Hz)
by varying SNRcoop from −40 dB to 40 dB. In Fig. 3a, the
main channel is symmetric with a SNR of 10 dB at each
receiver. In this case, the proposed scheme has the same
performance as the one-round scheme, both of which go from
the “no cooperation” lower bound RNC, when the cooperation
link is weak, to the cutset upper bound RCS, when the cooper-
ation link is strong, while the one-sided scheme has the same
performance as RNC. When the channel becomes asymmetric,
as shown in Fig. 3b and Fig. 3c, both the one-round and the
proposed schemes still bridge RNC and RCS as the strength of
the cooperation link increases. Note that the one-sided scheme
outperforms the one-round scheme with weak cooperation, and
conversely with strong cooperation, and that as demonstrated
in the information theoretic setting and its analysis in Cor. 1,
the proposed scheme outperforms both the one-sided and the
one-round schemes in all configurations. We insist on the
fact that the proposed scheme surpasses a simple selection
scheme between the one-sided and the one-round schemes.
This results from the interaction, the first receiver (using
CF) brings knowledge to the second receiver (using DF)
that improves the performances of the DF, thus the latter
one can improve its help toward the first one. Note that in
Fig. 3a the proposed scheme has the same performance as
the one-round scheme for completely symmetric channels,
which can be explained as follows, 1) with the one-round
scheme, both receivers decode simultaneously, using the other
one as a CF relay, 2) with the two-round scheme, one of the
receivers decodes first, using the other one as a CF relay. When
the channel is completely symmetric, both receivers in the
one-round scheme achieve the same performance as the first
decoder of the two-round scheme, which proves that the one-
round scheme cannot achieve a lower rate than the two-round

scheme for completely symmetric channels. However, from
Cor. 1, we know that the two-round scheme cannot be worse
than the one-round scheme, thus both schemes should have
the same performance for completely symmetric channels.

We focus in a second time on the MISO 2×1 Gaussian MC
as defined in (21) and (22), and evaluate through numerical
simulations the achievable rate of the proposed scheme given
in (32), as well as the rate bounds provided in Sec. III for
their corresponding optimal parameters. In Fig. 4a, the main
channel is symmetric. Contrary to the SISO case, in the MISO
case the proposed scheme strictly outperforms the one-round
scheme due to the beamforming optimization. In the one-round
scheme, the equipartition of the power allocation enhances
the achievable rate of both receivers, while in the proposed
scheme, the beam in cooperation with the receiver using DF
enhances the link towards the receiver using CF, virtually
establishing an asymmetric channel leading to an improvement
of the achievable rate. Same for the one-sided scheme no
longer equal to the “no cooperation” lower bound. When the
channel becomes asymmetric, as shown in Fig. 4b and Fig. 4c,
the comments for the SISO case also hold for the MISO case.

VI. CONCLUSION

In this paper, we investigated the impact of receiver cooper-
ation on the throughput of a two-receiver MC. We proposed an
interactive cooperation scheme and proved that it outperforms
existing schemes in which no interaction is exploited. The
numerical results validated the theoretical analysis focusing
on the Gaussian MC. Our results revealed that interaction is
particularly helpful when the main channel is asymmetric, and
that the MISO MC enhances further the interaction properties.
Our ongoing work includes the extension of the current results
to a larger network.

APPENDIX
SETUP OF PROP. 1

We consider STG2→1→2. A sequence of (b − 2) messages
Mj , j ∈ [1 : b− 2], are selected independently and uniformly
over [1 : 2nR] and are separately encoded and transmitted
over b blocks. The average rate R b−2

b tends to R as b tends
to infinity.

Codebook generation. Fix the probability distribution

p(x, x1, x2, y1, y2, ŷ2) =

p(x, x1)p(x2)p(y1, y2|x, x1, x2)p(ŷ2|x2, y2). (41)

Generate at random an independent codebook for each
block (only three such independent codebooks used for
every consecutive triple-block are required, so that joint
decoding over any three adjacent blocks result in independent
error events). For j ∈ [1 : b], randomly and independently
generate 2nR sequences xn1 (mj−2),mj−2 ∈ [1 : 2nR], each
according to

∏n
i=1 pX1

(x1i). For each mj−2 ∈ [1 : 2nR],
randomly and conditionally independently generate 2nR

sequences xn(mj |mj−2),mj ∈ [1 : 2nR], each according to∏n
i=1 pX|X1

(xi|x1i(mj−2)). Randomly and independently
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generate 2nR2 sequences xn2 (lj−1), lj−1 ∈ [1 : 2nR2 ], each
according to

∏n
i=1 pX2

(x2i). For each lj−1 ∈ [1 : 2nR2 ],
randomly and conditionally independently generate 2nR̂2

sequences ŷn2 (kj |lj−1), kj ∈ [1 : 2nR̂2 ], each according to∏n
i=1 pŶ2|X2

(ŷ2i|x2i(lj−1)).

The codebooks are defined as,

Cj =
{

(xn(mj |mj−2), xn1 (mj−2), xn2 (lj−1),

ŷn2 (kj |lj−1))|mj ,mj−2 ∈ [1 : 2nR],

lj−1 ∈ [1 : 2nR2 ], kj ∈ [1 : 2nR̂2 ]
}
, (42)

for j ∈ [1 : b]. Partition the set [1 : 2nR̂2 ] into 2nR2 equal size
bins B(lj) = [(lj − 1)2n(R̂2−R2) + 1 : lj2

n(R̂2−R2)], lj ∈ [1 :
2nR2 ], R̂2 ≥ R2. The codebooks and the bin assignments are
revealed to all parties.

Encoding. Let mj ∈ [1 : 2nR] be the message to be sent
over the block j. The encoder transmits xn(mj |mj−2) from
the codebook Cj , where m−1 = m0 = mb−1 = mb = 1 by
convention.

Relay encoding at receiver 2. Let l0 = lb−1 = 1 by
convention. At the end of block j, the relay receiver 2 finds
an index kj s.t. (yn2 (j), ŷn2 (kj |lj−1), xn2 (lj−1)) ∈ T (n)

ε′ . If
there is more than one such index, it selects one of them
uniformly at random. If there is no such index, it selects an
index from [1 : 2nR̂2 ] uniformly at random. In block j+ 1 the
relay receiver 2 transmits xn2 (lj) from codebook Cj+1, where
kj ∈ B(lj).

Decoding at receiver 1. Let ε > ε′. At the end
of block j + 1, the decoder receiver 1 finds the
unique index l̂j s.t. (xn2 (l̂j), x

n
1 (m̂′j−1), yn1 (j + 1)) ∈

T (n)
ε . It then finds the unique message m̂′j s.t.,

(xn(m̂′j |m̂′j−2), xn2 (l̂j−1), ŷn2 (k̂j |l̂j−1), xn1 (m̂′j−2), yn1 (j)) ∈
T (n)
ε , for some k̂j ∈ B(l̂j).

Relay encoding at receiver 1. Let m̂−1 = m̂0 = 1 by
convention. In block j + 2 the relay receiver 1 transmits
xn1 (m̂′j) from the codebook Cj+2.

Sliding window decoding at receiver 2. At the end of
block j + 2, the decoder receiver 2 finds the unique message
m̂′′j s.t. (xn(m̂′′j |m̂′′j−2), xn1 (m̂′′j−2), xn2 (lj−1), yn2 (j)) ∈ T (n)

ε



and (xn1 (m̂′′j ), xn2 (lj+1), yn2 (j + 2)) ∈ T (n)
ε simultaneously.

Analysis of the probability of error at receiver 1 and 2.
The probability of decoding error is analyzed at the decoder
receiver 1 and 2, for the message Mj averaged over codebooks.
Assume without loss of generality that Mj−2 = Mj = 1
and let Lj−1, Lj ,Kj denote the indices chosen by the relay
receiver 2 in block j. Then, the decoder receiver 1 makes an
error only if one or more of the following events occur,

E(1)2→1→2(j − 2) =
{
M̂ ′j−2 6= 1

}
(43)

Ê(2)(j) =
{

(Y n2 (j), Ŷ n2 (kj |Lj−1),

Xn
2 (Lj−1)) 6∈ T (n)

ε′ , ∀kj ∈ [1 : 2nR̂2 ]
}

(44)

E(1)1(j) =
{
L̂j 6= Lj

}
and E(1)1(j − 1) (45)

E(1)2(j) =
{

(Xn(1|M̂ ′j−2), Y n1 (j), Ŷ n2 (Kj |L̂j−1),

Xn
1 (M̂ ′j−2), Xn

2 (L̂j−1)) 6∈ T (n)
ε

}
(46)

E(1)3(j) =
{

(Xn(m′j |M̂ ′j−2), Y n1 (j), Ŷ n2 (Kj |L̂j−1),

Xn
1 (M̂ ′j−2), Xn

2 (L̂j−1)) ∈ T (n)
ε

for some m′j 6= 1
}

(47)

E(1)4(j) =
{

(Xn(m′j |M̂ ′j−2), Xn
1 (M̂ ′j−2), Y n1 (j),

Ŷ n2 (k̂j |L̂j−1), Xn
2 (L̂j−1)) ∈ T (n)

ε

for some k̂j ∈ B(L̂j), k̂j 6= Kj ,m
′
j 6= 1

}
.

(48)

Applying the law of large numbers, the conditional typical-
ity lemma [15, Sec. 2.5], the joint typicality lemma [15,
Sec. 2.5.1], the packing lemma [15, Lem. 3.1, Sec 3.2],
the covering lemma [15, Lem. 3.3, Sec 3.7], the lemma
11.1 [15, Sec. 11.3.1], the chain rule, and the Fourier-Motzkin
elimination procedure [15, Appx. D] gives the bounds

R ≤I(X;Y1, Ŷ2|X1, X2)− δ(ε) (49)
R ≤I(X,X2;Y1|X1)

− I(Y2; Ŷ2|X,X1, X2, Y1)− (2δ(ε) + δ(ε′)). (50)

Assume without loss of generality that Mj−2 = Mj = 1.
Then, the decoder receiver 2 makes an error only if one or

more of the following events occur,

E(1)2→1→2(j − 2) =
{
M̂ ′j−2 6= 1

}
and E(1)2→1→2(j) (51)

E(2)2→1→2(j − 2) =
{
M̂ ′′j−2 6= 1

}
(52)

E(2)1(j) =
{

(Xn(M̂ ′′j |M̂ ′′j−2), Y n2 (j), Xn
1 (M̂ ′′j−2),

Xn
2 (Lj−1)) 6∈ T (n)

ε or (Xn
1 (M̂ ′′j ),

Y n2 (j + 2), Xn
2 (Lj+1)) 6∈ T (n)

ε

}
(53)

E(2)2(j) =
{

(Xn(m′′j |M̂ ′′j−2), Y n2 (j), Xn
1 (M̂ ′′j−2),

Xn
2 (Lj−1)) ∈ T (n)

ε and (Xn
1 (m′′j ),

Y n2 (j + 2), Xn
2 (Lj+1)) ∈ T (n)

ε

for some m′′j 6= M̂ ′j
}
. (54)

Applying the law of large numbers, the joint typicality lemma
and the chain rule gives the bound

R ≤ I(X,X1;Y2|X2)− 2δ(ε). (55)

Combining the bounds (49), (50), and (55), taking the limit
over n and maximizing over the two strategies gives the result
in Prop. 1.
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