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Abstract— In this paper, we study coding techniques for the
multiple-input multiple-output multi-hop amplify-and-forward
(MIMO-MH-AF) block-fading channel. We first derive conditions
on coding rates and space-time precoders that allow a coded
modulation to achieve the available diversity of the channel. We
then derive a bound on the diversity order of a coded modulation
so as to attain maximum diversity through parallel partitioning of
the channel. Finally, word error rate performances are compared
to outage probabilities.

I. INTRODUCTION

Transmission over wireless channels suffers from severe
degradations due to effects such as path loss, shadowing,
fading, and interference from other transmitters. When fading
varies slowly, one way to achieve reliable communication is to
provide signal diversity in either time, frequency, or space [1].
For this purpose, multiple-antenna systems that provide spatial
diversity together with high capacity have been extensively
studied [2]. More recently, based on the seminal works in
[3] and [4] on relay channels, the authors in [5][6] provide
a framework for cooperative communications, where multiple
terminals use the resources of each other to form a virtual
antenna array. The main protocols that have been proposed
are the amplify-and-forward protocol, where relays amplify
the signals received from other terminals before retransmitting,
and the decode-and-forward protocol, where relays decode
the received signals before retransmitting. In networks where
sources and destinations have no direct links, wireless multi-
hop techniques where data is conveyed by short consecutive
transmissions through terminals have been considered. Multi-
hop techniques can avoid the deployment of wired backhaul
links in networks, and they can help increase the coverage of a
network. When employing amplify-and-forward cooperation,
they can enhance the throughput with short hops and extend
battery life of terminals due to lower power consumption.
Capacity issues of large relay networks have been extensively
addressed [7][8][9], but there are few works that consider
diversity analysis of wireless multi-hop networks. Among the
works on MIMO multi-hop channels, the authors in [10]
[11] propose distributed space-time coding techniques for the
MIMO two-hop channel, and the authors in [12] provide a
thorough diversity-multiplexing tradeoff [13] analysis of the
MIMO multi-hop channel, and they also propose methods
to achieve the highest possible diversity available in the

channel. In this paper, we study the performance of space-time
bit-interleaved coded modulations (ST-BICM) schemes [14]
[15] for the MIMO multi-hop amplify-and-forward (MIMO-
MH-AF) channels. Based on the work in [12], we propose
conditions and bounds on the coding rate and space-time
spreading factor for a ST-BICM to achieve the highest possible
diversity of the channel. The paper is organized as follows:
Section II gives the system model and notations, and Section
III gives the conditions and bounds on the diversity attainable
by a ST-BICM over the MIMO-MH-AF channel. Section IV
show word error rate performances, and Section V gives the
concluding remarks.

II. SYSTEM MODEL

We consider transmission from a source with n0 antennas
to a destination with nβ antennas through β−1 relays having
each ni antennas, i = 1 · · ·β − 1. Each relay scales and
retransmits the symbols it received to the following relay
until the information is conveyed to the destination in β hops,
thus direct source-destination transmission is not considered.
We consider full-duplex transmission, where terminals can
transmit and receive simultaneously, knowing that half-duplex
nodes only introduce delay without affecting the performance.
The channel between any two nodes is block-fading, i.e. a
codeword spans one temporal channel realization, and the
channel realizations are only known to the destination. The
vector of transmitted symbols x0 at the source is given by:

x0 = zS (1)

where z is the length-sn0 vector of 2m-Quadrature Amplitude
Modulation (QAM) modulation symbols, and S is a sn0×sn0
space-time rotation with time spreading s. In the absence of
space-time precoding, we have that s = 1 and S is the n0×n0
identity matrix. The received signal at node i is written as:

yi = xi−1Hi−1 + ηi, i = 1 · · ·β − 1 (2)

where yi is the length-sni vector of complex symbols received
at node i, xi−1 is the length-sni−1 vector of complex symbols
transmitted from node i− 1, Hi−1 is the sni−1 × sni matrix
of complex Gaussian fading coefficients with zero mean and
variance 1/2, and ηi is the length-sni vector of circularly
symmetric complex additive white Gaussian noise (AWGN)



coefficients with zero mean and variance 2N0. At each re-
lay, the sni × sni complex scaling matrix Bi performs the
following operation :

xi = yiBi (3)

subject to the power constraint E
(
‖yiBi‖2

)
≤ sni. The

channel from the source (node 0) to the destination (node β)
is then given as:

yβ = x0H+ ηc (4)

with:

H =

(
β∏
i=1

HiBi

)
(5)

is of dimensions n0 × nβ and

ηc = ηj

β∑
j=1

 β∏
i=j

Hi+1Bi

 (6)

Now let Γ be the covariance matrix of the colored noise,
given by:

Γ = E
[
η†cηc

]
= 2N0Θ (7)

where the † operator denotes transpose conjugate. By perform-
ing a Cholesky decomposition on Θ, we get:

Θ = Ψ†Ψ (8)

Thus the equivalent channel model becomes:

yβΨ−1 = x0HΨ−1 + η (9)

We consider a bit-interleaved coded modulation (BICM)
scheme, that operates as shown in Fig. 1: a convolutional
encoder of rate Rc = M/N ≤ 1 encodes M information
bits into N coded bits ci that are first interleaved, then
Gray mapped into QAM symbols, rotated using a space-time
precoder and transmitted over the channel as in (4).

Fig. 1. ST-BICM encoder.

At the destination, the soft-input soft-output (SISO) a pos-
teriori probability (APP) detector computes extrinsic informa-
tion ξ(ci) on coded bits based on the channel matrix H, the
received vector yβ , and a priori probabilities fed back from
the SISO decoder, as shown in Fig. 2. The SISO decoder uses
the forward-backward [16] algorithm to compute maximum a
posteriori probabilities on information bits. The set of vectors
Ω of size |Ω| = 2sn0m generated by the QAM modulator

determines the complexity at the detector. The transmitted
information rate is given by R = Rcn0m.

Fig. 2. ST-BICM iterative detector and decoder.

III. DIVERSITY OF CODED MODULATIONS OVER THE
MIMO-MH-AF CHANNEL

We will start by recalling some results on the diversity
of the MIMO-MH-AF scheme from [12]. Let the set n̂ =
(n̂0, n̂1, · · · , n̂β) be the set of antennas n = (n0, n1, · · · , nβ)
ordered in an increasing way. The achievable diversity dach
of the MIMO-MH-AF channel is bounded as:

n̂0 (n̂1 + 1)

2
≤ dach ≤ dmax = n̂0n̂1 (10)

where:

dach =

n̂0∑
i=1

ci (11)

ci = 1− i+ min
j=1,··· ,β

b
∑j
`=0 n̂` − i

j
c, i = 1, · · · , n̂0 (12)

The highest achievable diversity is thus determined by the
product of the two smallest antenna configurations. However,
it is always strictly higher than half of the same product,
whatever the number of hops is. In the case of the amplify-and-
forward protocol, the upper bound on the diversity is rarely
reached due to the mismatch between adjacent sub-channels.
In fact, it can achieve the upper bound provided that the two
relays with the lower antenna configurations are in the vicinity
of each others, and that:

n̂2 ≥ n̂0 + n̂1 − 1

In other words, the MIMO-MH-AF channel can be seen as a
point-to-point MIMO n0×nβ channel whose diversity cannot
exceed n̂0n̂1.

A. Achieving the achievable diversity

1) Non-precoded MIMO-MH-AF channel: Following [17],
we define the BO-channel as the binary-oriented channel with
input ci and output ξ(ci) seen by the code. In addition, accord-
ing to Definition 1 in [17], under perfect a priori information
in the BO-channel, the number of non-ergodic fading sub-
channels is denoted by Dst and called the state diversity.
Following this definition, the state diversity dst(c) achieved
by a codeword c is the number of non-zero partial Hamming



weights ωi, where
∑Dst
i=1 ωi = ωH(c) is the Hamming weight

of the code. Without space-time precoding of the MIMO multi-
hop channel, the number of the fading sub-channels of the
BO-channel corresponds to the number of transmit antennas
at the source, i.e. Dst = n0. In addition, an interleaver is
said to be optimal if it is capable of placing the bits of an
error event as much uniformly as possible on the different
channel states and on different time slots [15] [14]. Hence,
under optimal interleaving, the condition on the coding rate
Rc in order to achieve the state diversity Dst of a coded
modulation transmitted over a non-precoded MIMO-MH-AF
channel is given by:

dst = Dst ⇐⇒ Rc ≤
1

Dst
=

1

n0
(13)

In fact, as the interleaver is optimal, for any pair of codewords
(c, c′), the ω non-zero bits of c − c′ are transmitted over the
Dst states and over different time periods. The interleaving,
modulation and transmission through the channel convert the
codewords c and c′ onto points C and C′ in a Euclidean space.
For a fixed channel, the performance is directly linked to the
Euclidean squared distance |C − C′|2, that can be rewritten
as a sum of ω squared Euclidean distances associated to
the ω non-zero bits of c − c′. For each of the ω squared
Euclidean distances, we can build an equivalent channel
model which corresponds to the transmission of a BPSK
modulation over one row of the channel matrix H. Thus,
several squared Euclidean distances appear to be transmitted
on the same equivalent channel and the squared distance
|C − C′|2 can be factorized as follows: |C − C′|2 =

∑nβ
i=1 d

2
i

where d2i is linearly dependent on the norm of the i-th row
of H. For the decoder to recover the achievable diversity
dach = n̂0n̂1, the coded bits should be sent over the Dst = n0
channel states. Hence, the performance of coded modulations
over the MIMO-MH-AF channel depends on the number
of antennas available at the source, while with uncoded
systems transmission rate is limited by the smallest antenna
configuration n̂0.

2) Precoded MIMO-MH-AF channel: Now let us suppose
that a space-time precoder takes sn0 modulated symbols,
rotates them, and sends their combinations over the n0 transmit
antennas over s time periods. In this case, we have that
Dst = n0/s. The condition on the coding rate Rc in order
to achieve full state diversity is as follows:

dst = Dst ⇐⇒ Rc ≤
1

Dst
=

s

n0
(14)

As with the point-to-point MIMO channel [14], space-time
rotations with full spreading (i.e. s = n0) lead to Dst = 1
and full transmission diversity whatever the coding rate is.
However, for some ranges of coding rates, tuning of the
time spreading can lead to full diversity with lower detection
complexity. By reducing the number of states seen by the
code, coding rates that achieve full diversity are increased.
As an example, we consider transmission over the four-hop

(4, 2, 2, 2, 3) channel. The available diversity of the channel
is dach = 3 achievable without space-time precoding with
Rc = 1/4, as Dst = 4. The rate can be increased to
Rc = 1/2 with a space-time rotation with s = 2 that reduces
state diversity to Dst = 2 and allows to achieve the highest
possible diversity of the channel.

3) Vertical reduction of the MIMO-MH-AF channel: An-
other way for a coded modulation scheme to attain the highest
possible diversity dach with higher coding rates is by vertical
reduction [12] at the source, defined as follows: Let n =
(n0, n1, · · · , nβ) represent the set of antennas of a MIMO
multi-hop block-fading channel. The channel represented as
n

′
=
(
n

′

0, n
′

1, · · · , n
′

β

)
is a vertical reduction of n if dach(n)

= dach(n
′
) and n

′

i ≤ ni. In order to attain full diversity with
higher coding rates, it is thus beneficial to perform vertical
reduction to decrease the number of channel states at the
source, i.e. finding n

′

0 < n0 with dach(n) = dach(n
′
). In this

case, we have that D
′

st = n
′

0/s and:

dst = D
′

st ⇐⇒ Rc ≤
1

D
′
st

=
s

n
′
0

(15)

Again, considering the same four-hop (4, 2, 2, 2, 3) channel,
only 2 out of the 4 transmit antennas can be used, allowing a
coding rate Rc = 1/2 to achieve dach = 3 without precoding
over the (2, 2, 2, 2, 3) channel.

B. Achieving the maximal diversity: parallel partitioning of
the MIMO-MH-AF channel

In order to achieve the upper bound on the achievable
diversity in (10), the authors in [12] proposed to partition the
channel in different AF paths. The motivation is to introduce
temporal processing in addition to the space processing inher-
ent to MIMO systems, which is accomplished by partitioning
the relays in each layer. The relays coordinate to convey the
information following the predefined partition in a periodic
way. To obtain full-dviersity independent parallel partitions,
relays are chosen as to activate a subset of their antennas
per transmission time as to ensure that any two different AF
paths do not share edges. The number of partitions one can
carve from a MIMO-MH-AF channel and their sizes varies
depending on the channel configuration. The channel model
with partitioning is thus given by:

yβ = x0Hpp + ηc (16)

with:

Hpp = diag

H1, . . . ,H1︸ ︷︷ ︸
α

, . . . ,HK , . . . ,HK

 (17)

being the channel matrix. Here α = s
K if s > 1, and α = 1

otherwise. The matrices Hk have dimensions n0 × nβ .
The MIMO-MH-AF channel with K parallel partitions hav-

ing each nk,0 transmit antennas is equivalent to an uncorrelated
nc-block fading channel with nt transmit antennas [14]. We



can thus obtain a modified Singleton bound [18] [15] on the
achievable diversity order of a coded modulation under optimal
interleaving as:

d ≤ min

(
sdmax

Kn0,k
b
Kn0,k

s
(1−Rc) + 1c, dach = dmax

)
(18)

Note that optimal interleaving in this case implies that, in
addition to uniformly distributing the bits of an error events
on the different channel states and time instance, bits should
be sent in different AF paths. To illustrate the bound in (18),
we provide the following examples:
• Example 1 : Consider the channel n = (2, 2, 2), dach = 3,

achievable with Rc = 1/2. By decomposing the channel
into 2 correlated channels with nk = (1, 2, 2) each, a code
with Rc = 1/2 can be used but the correlation between
the paths still maintains the diversity order at dach = 3.
However, if we decompose it into 2 independent channels
with nk = (2, 1, 2) each, the diversity would be dach =
2 + 2 = 4 = dmax, achievable with Rc = 1/4 and the
same optimized interleaver for the 2 × 2 point-to-point
MIMO channel with nc = 2 blocks. Alternatively, a half-
rate code with an s = 2 space-time rotation achieves the
maximal diversity as well.

• Example 2 : n = (3, 3, 3), dach = 7, achievable with
Rc = 1/3. If we decompose it into 3 channels with nk =
(3, 1, 3) each, the diversity would be dach = dmax = 9,
achievable with Rc = 1/9. However, using a rotation
with s = 3 can allow a code with Rc = 1/3 to achieve
the maximal diversity.

• Example 3 : Consider the channel n = (2, 2, 2, 3), dach =
3, achievable with Rc = 1/2. If we decompose it into 2
non-independent channels with nk = (2, 1, 2, 3) each, the
diversity would be dach = 2 + 2 = 4 = dmax, achievable
with Rc = 1/4. This is possible because the channels
starting from the dispatching level, namely n

′′

1 = (2, 2, 3)
and n

′′

2 = (2, 2) have diversity order dmax = 4.
In fact, achieving maximum diversity does not require having
independent parallel partitions. In some cases, full diversity
can be achieved with a non-independent parallel partition,
conditioned on the fact that if the partition occurs at relay
i, the diversity of the kth AF path is:

dmax,k = min{d(nk,0,··· ,nk,i), d(nk,i,··· ,nk,β)} (19)

Although achieving full diversity, parallel partitions suffer
from high outage probability, as by choosing subsets of
antennas to operate at relays the other antennas are wasted
resources. An alternative is the so-called “flip-and-foward”
(FF) protocol where rotation matrices are applied at relays
to create parallel partitions while using all the antennas. To
illustrate this protocol, we consider the two-hop channel with
n = (2, 2, 2). We can decompose this channel into two parallel
channels H1 and H2 given by:

H1 = H1P1H2 (20)
H2 = H1P2H2 (21)

To obtain independent parallel partitions, we set:

P1 =

[
1 0
0 0

]
(22)

and
P2 =

[
0 0
0 1

]
(23)

With the FF protocol, we have that :

P1 =

[
1 0
0 1

]
(24)

and
P2 =

[
1 0
0 −1

]
(25)

By using all the antenna resources in all AF paths, the FF
scheme is shown to be superior in terms of outage probability.

IV. SIMULATION RESULTS

In this section, word error rate performance of coded
modulations over the MIMO-MH-AF channel is compared to
outage probability [19] for 1000 < N < 1500. We consider
non-recursive non-systematic convolutional (NRNSC) codes
and interleavers from [14] that are optimal for point-to-point
MIMO block-fading channels. The space-time rotations are the
Dispersive Nucleo Algebraic (DNA) precoders from [14] that
exist for all antenna configurations and spreading factors and
that are optimal with iterative detection and decoding. In Fig.
3, results for the two-hop MIMO AF channel with four-state
NRNSC codes and BPSK modulation are shown. The initial
channel is the (4, 2, 2) channel with dach = dmax = 4. With
half-rate coding and without precoding, maximal diversity
cannot be guaranteed. In order to attain full diversity, a code
with Rc = 1/4 should be used if no precoding is available.
However, a space-time rotation with s = 2 is needed to achieve
full diversity with a half-rate code. Another way to achieve full
diversity is by vertical reduction, i.e. by sending symbols over
three out of the four available antennas at the source. As the
(3, 2, 2) and the (4, 2, 2) MIMO AF channels have the same
diversity order, a code with Rc = 1/3 is sufficient to achieve
full diversity. In Fig. 4, error rate performance for the two-
hop (2, 2, 2) MIMO AF channel with BPSK modulation is
shown. The half-rate code is the (133, 171)8 64-state NRNSC
code, and the Rc = 1/4 code is the (13, 17, 15, 11)8 four-state
code. The diversity of the (2, 2, 2) channel is dach = 3 <
dmax = 4, that is achieved with or without precoding using
half-rate coding. In order to achieve full diversity, partitioning
is required using either the parallel partition or the flip-and-
forward protocol, that is similar to the parallel partitioning
in terms of achievable diversity orders but has better coding
gains. Maximum diversity is thus attained with two AF paths
using either a Rc = 1/4 code or a half-rate code with a
s = 2 space-time rotation according to (18). Fig. 5 shows the
performance over the three-hop (2, 2, 2, 3) MIMO AF channel
with four-state NRNSC codes and BPSK modulation. Without
partitioning, the diversity dach = 3 of the channel is achievable
with half-rate coding. In order to attain dmax = 4, a partition



with non-independent AF paths is sufficient, as explained in
Example 3 of Section III-B. Coded modulations with half-rate
coding and s = 2 rotation or alternatively with Rc = 1/4
achieve this upper bound.
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Fig. 3. Two-hop MIMO-AF channel, BPSK modulation, NRNSC codes.
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Fig. 4. Two-hop MIMO-AF channel, QPSK modulation, NRNSC codes.

V. CONCLUSIONS

We studied coding strategies for the multiple-antenna multi-
hop amplify-and-forward channel. We proposed conditions
on coding rates to achieve full-diversity over these channels.
Moreoever, we derived a bound on diversity orders a coded
modulation can achieve with low decoding complexity over
the paritioned multi-hop channel. Finally, performances close
to outage probabilities for different channel configurations,
coding rates, and constellation sizes are shown.
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