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Abstract

The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and

coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal

interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity

upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding

is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver

and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders

have good performance with respect to the state of the art and exist for any number of transmit antennas and any

time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.

Index terms

Bit-interleaved coded modulation, interleaving, multiple antenna channels, Singleton bound, space-time coding

I. Introduction

The wide panel of today’s wireless transmission contexts makes implausible the existence of a miraculous universal

solution which always exhibits good performance with low complexity. Different scenarios (indoor, outdoor with low

velocity, outdoor with high velocity) correspond to different amounts of time and frequency diversity. The success of the

multi-carrier modulation as a solution for future wireless systems is partly due to the low receiver complexity even over

large frequency bands. In this paper, we focus on an indoor environment and design a system approaching the optimal
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performance taught by information theory. In a wireless indoor environment, both time and frequency diversities may

be poor due to small terminal velocity and possibly very short channel impulse response. These particularly tricky low-

diversity channels are modelled as block-fading channels. Over low-diversity multiple-input multiple-output (MIMO)

channels, space-time coding techniques often enable transmission with improved data rate and diversity, within a

limit given by the rank of the MIMO system [1][18][19][21]. These open-loop schemes only require the knowledge of

the channel long-term statistics. Besides, closed-loop techniques such as beamforming take benefit from a short-term

channel knowledge to improve the performance/complexity trade-off at the cost of additional signalling overhead. As

a first step in providing increased data rates in future generations of indoor wireless local access networks (WLANs),

we study how to appropriately choose the channel coding, the channel interleaving and the space-time coding.

For frame sizes of practical interest, coded modulations have to be considered since space-time codes employed with

uncoded modulations exhibit a frame error rate (FER), which is dramatically degraded [24, Appendix A]. Thus, we

focus on the bit-interleaved coded modulation (BICM) structure, which is the concatenation of a channel encoder,

an interleaver and a modulator. The analysis of the BICM maximum-likelihood (ML) performance is tractable and

eases the coded modulation design. Furthermore, thanks to the interleaver, iterative processing at the receiver achieves

quasi-ML performance with reduced complexity. On a MIMO channel, the BICM may be concatenated with a simple

full-rate space division multiplexing scheme (SDM) [21]. In this paper, we improve performance of this space-time BICM

(ST-BICM) by replacing the SDM by a more efficient full-rate linear space-time code: a linear precoding or equivalently

a space-time spreading. Linear precoding is performed by multiplying the complex multiple-antenna signal by a square

complex space-time matrix. The space-time matrix enhances the diversity by mixing the symbols of different time

periods and antennas together.

The choice of the ST-BICM structure may also be explained as follows: We aim at optimizing a full-rate space-time

code based on linear precoding, taking into account the structure of the whole transmitter, which inevitably includes

an error-correcting code, an interleaver and a symbol mapper. Usually, space-time codes are designed independently

from the other elements of the transmitter. However, frames of bits are linked through the error-correction code

and optimizing the space-time code taking into account the whole transmitter is equivalent to optimizing a BICM

concatenated with a space-time code, i.e., an ST-BICM.
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On an ergodic channel, the achieved diversity order is equal to the code minimum distance multiplied by the number of

receive antennas. In most cases, the minimum distance is high enough and increasing diversity through linear precoding

does not bring much improvement. For a block-fading channel, the diversity is upperbounded by the number of channel

realizations in a codeword multiplied by the number of transmit antennas and the number of receive antennas. Using

the Singleton bound, we will exhibit an additional upperbound on the diversity order, which may be very limiting

without precoding. Hence, in this paper, we will study ST-BICM with linear precoding, focusing on the block-fading

channel and optimize the linear precoding using the ST-BICM ML performance in order to achieve full-diversity and

maximum coding gain. First, we derive the coding gain of an ideal ST-BICM. It is related to the notion of Shannon

code and sphere-hardening [39]. Indeed, the ideal Shannon code for additive white gaussian noise (AWGN) channels is

located near a sphere, called the Shannon’s sphere. Thanks to the interleaver, the squared Euclidean norm of BICM

codewords has low variance, which implies that codewords lie close to the Shannon’s sphere. The BICM may be seen as

a quantization of this sphere, which should be as uniform as possible to maximise the size of Voronoi regions. On MIMO

fading channels, the Shannon’s sphere becomes a Shannon’s ellipsoid [20] and BICM codewords are randomly located

close to the ellipsoid. We show that the ideal BICM configuration maximizes the Voronoi region volume whatever

the channel realization. We present a practical system that approaches the ideal BICM configuration including the

so-called dispersive nucleo algebraic (DNA) precoder and compare its performance to the ideal ST-BICM performance.

The DNA precoder exists for any numbers of space and time dimensions. We finally design a practical interleaver,

which approximates the ideal interleaving conditions.

The paper is organized as follows: In section II, the ST-BICM transmitter and the associated iterative receiver are

presented. In section III, we derive the analytical ML performance under ideal interleaving assumption for an ergodic

channel without precoding and a block-fading channel with and without precoding. Using the Singleton bound, we

show in section IV that ideal interleaving conditions cannot be achieved on a block-fading channel with any kind

of parameters and that linear precoding may be mandatory in some configurations. Section V describes the linear

precoding optimization for a block-fading channel and section VI the interleaver design for convolutional codes and its

application to turbo codes. Finally, simulation results are presented in section VII, which confirm the behavior which

was expected from the analytical study. Furthermore, they show the good performance of the DNA precoders and the

advantage of using turbo codes to get a non-increasing FER when the frame size increases.
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II. System model and notations

A. Transmitter scheme

The transmitter scheme is built from the following fundamental block concatenation: A binary error-correcting code

C followed by a deterministic interleaver Π, a symbol mapper (e.g., for a quadrature amplitude modulation (QAM)), a

full-rate space-time spreader S (i.e., a linear precoder) and a set of nt transmit antennas. Fig. 1 illustrates the BICM

transmitter structure.

Without loss of generality, we assume that the error-correcting code C is a convolutional code with rate RC . The

encoder associates with the input information word b the codeword c ∈ C. Sequence b (resp. c) has length KCLC

(resp. NCLC) bits, where LC is the codeword length in trellis branches. The interleaver Π, which scrambles the LCNC

coded bits, is a crucial function in the BICM structure, as it allows the receiver to perform iterative joint detection

and decoding. Indeed, it ensures independence between extrinsic and a priori probabilities, in both the detector and

the decoder. Furthermore, when maximum-likelihood (ML) decoding is tractable, interleaving prevents erroneous bits

of a same error event from interfering with each other in the same precoded symbol. The interleaver Π may be pseudo-

random (PR) or semi-deterministic with some deterministic constraints as described in section VI. In the symbol

mapper, m consecutive interleaved coded bits are mapped together onto a modulation symbol, according to a bijection

between bit vectors and modulation symbols called mapping or labeling. The number of modulation symbols is equal to

M = 2m. For each channel use, i.e., in each time period, the mapper reads mnt coded bits and generates nt modulation

symbols. In order to make the reading easier, the obtained nt-dimensional constellation Ω will denote both the set of

symbols and the set of binary labelings. Throughout this paper, we will consider QAM modulations as they achieve

a good compromise between spectral efficiency (in bits/s/Hz or bits/dim) and performance. Moreover, with QAM

modulation, the system is easily modeled using a lattice constellation structure [10], which gives access to the lattice

theory toolbox, both for transmitter and receiver optimizations. We assume that the QAM modulation has unit energy.

The linear precoder S spreads the QAM symbols over s time periods. It converts the nt × nr vector channel into an

Nt ×Nr vector channel, where Nt = nts and Nr = nrs. The Nt ×Nt matrix S multiplies a vector of Nt QAM symbols

zi = (zi,1, zi,2, . . . , zi,Nt) at the mapper output, generating Nt symbols to be transmitted during s time periods. Vector

zi is the ith vector to be precoded. The precoder S spreads the transmitted symbols over a higher number of channel
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states in order to exploit diversity. The S matrix is normalized as follows:

Nt∑
u=1

Nt∑
v=1

|Su,v|2 = Nt (1)

In this paper, we assume a block-fading channel with nc distinct channel realizations during a codeword. We denote ns

the number of distinct channel realizations during a precoded symbol. To simplify notations, we assume that ns divides

nc. We will call channel state the 1 × nr SIMO channel associated with one of the nt transmit antennas and one of

the nc channel realizations. The channel experienced by precoded symbol i is represented by a Nt ×Nr block-diagonal

matrix Hi with s blocks of size nt×nr. During one precoded symbol, we assume that each of the ns channel realizations

is repeated s/ns times. The Hi matrix is organized as follows:

Hi = diag
(
H[1]

i , . . . ,H[1]
i ,H[2]

i , . . . ,H[2]
i , . . . ,H[ns]

i . . . ,H[ns]
i

)
(2)

where H[t]
i denotes the nt×nr complex matrix representing the t-th channel realization experienced by the i-th precoded

symbol. The H[t]
i matrix is repeated s/ns times. Elements of H[t]

i are independent complex Gaussian variables with zero

mean and unit variance. Let H denote the set of channel realizations observed during the transmission of a codeword.

Thanks to the extended channel matrix, we write the channel input-output relation as:

yi = xi + ηi = ziSHi + ηi (3)

where yi ∈ CNr and each receive antenna is perturbed by an additive white complex Gaussian noise ηi,j , j = 1 . . .Nr,

with zero mean and variance 2N0. We define the signal-to-noise ratio Eb/N0, where Eb is the total energy of an

information bit at the receiver. Thanks to linear precoding, the nt × nr MIMO nc-block-fading channel is converted

into an Nt ×Nr MIMO Nc-block-fading channel where Nc = nc/ns. If ns = 1, the precoder experiences a quasi-static

nt×nr MIMO channel. In the following, index i will be omitted if a single precoded symbol is considered and precoding

time period will refer to a transmission over SH, i.e., over s time periods.

The concatenation of the binary error-correcting code C, the interleaver Π, the mapper Ω, the linear precoder S

and the channel describes a global Euclidean code CE which converts LCKC information bits into a complex LCNC/m-

dimensional point.
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B. Iterative receiver scheme

An ideal BICM receiver would directly perform an ML decoding on the set CE of transmitted codewords. However, it

requires an exhaustive search among the 2KCLC codewords, which is intractable. All existing receivers use the concate-

nated structure of the BICM to split the reception into several steps. In this paper, we assume perfect synchronization

and channel estimation. Thus, the receiver, as depicted on Fig. 2, is divided in two main elements: a soft-input soft-

output (SISO) APP QAM detector, which acts as a soft-output equalizer for both the space-time spreader and the

MIMO channel, converting the received point y into information on the coded bits in the estimated coded sequence

ĉ, and a SISO decoder for C, improving the information on coded bits and estimating the information bit sequence b̂.

The depicted iterative joint detection and decoding process is based on the exchange of soft values between these two

elements. The SISO detector computes extrinsic probabilities ξ(c�) on coded bits thanks to the conditional likelihoods

p(yi|z) and the a priori probabilities π(c�) fed back from the SISO decoder:

ξ(c�) =

∑
z′∈Ω(c�=1)

[(
e−

‖yi−z′SHi‖2

2N0

)∏
r �=� π(cr)

]
∑

z∈Ω

[(
e−

‖yi−zSHi‖2

2N0

)∏
r �=� π(cr)

] (4)

where Ω is the Cartesian product (M -QAM)Nt , i.e., the set of all vectors z generated by the QAM mapper, |Ω| = 2mNt .

The subset Ω(c� = 1), for � = 0, 1, . . . ,mNt − 1, is restricted to the vectors z in which the �-th coded bit is equal to

1. The detector independently computes the soft outputs for each precoding time period. At the first iteration, there

is not any a priori information available at the detector input. Through the iterations, the a priori probability on

constellation points computed from the probabilities fed back by the SISO decoder becomes more and more accurate.

Ideal convergence is achieved when a priori probabilities provided by the decoder are perfect, i.e., equal to 0 or 1.

The decoder uses a forward-backward algorithm [2], which computes the exact extrinsic probability using the trellis

structure of the code.

III. Theoretical performance for ideally interleaved BICM

Heavy work has been made to estimate the frame or bit error rate of the BICM with ML decoding, in particular using

Gaussian approximations or numerical integrations [5], but a closed-form expression of the pairwise error probability

had not been derived yet. This section first describes an accurate computation of bit and frame error rates of BICM ML

performance over ergodic MIMO channel with ideal interleaving and without precoding. A more detailed description

of the derivation may be found in [23] and [24]. Under ideal interleaving condition, we are able to derive a closed form

expression of the probability density of the log likelihood ratio (LLR) at the output of the detector and then a closed
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form expression of the pairwise error probability at the output of the decoder. It is then straightforward to use well-

known techniques to estimate the bit or frame error rate of a coded modulation from pairwise error probability. This

subject has been extensively discussed for coded modulations over AWGN channels. Examples are the union bound

on the transfer function of a convolutional code and the more accurate tangential sphere bound [36] for spherical

constellations.

Subsequently, we extend the study to the block-fading MIMO channel when linear precoding is used at the trans-

mitter. Note that the method is also valid for correlated MIMO channels. We extract from the bit error rate expression

some design criteria on BICM precoder, interleaver, and error-correcting code.

A. Ideal interleaving condition

The evaluation of the bit error rate (BER) or frame error rate (FER) of a coded modulation is usually based on

the derivation of an upper bound on the actual performance obtained by a balanced summation of pairwise error

probabilities. Each pairwise error probability involves the Euclidean distance between two codewords with a Hamming

distance w.

With an nt×nr MIMO block-fading channel with nc blocks, the minimum diversity recovered at the detector output,

and thus at the decoder output, is always equal to the reception diversity nr. Let us consider an error event with w

erroneous bits and assume that the maximum diversity order is Υmax. If w ≥ Υmax/nr, we achieve full diversity if

each of the Υmax/nr independent fading random variables is experienced by at least one bit among w. In a precoding

time period k in which at least an erroneous bit is transmitted, the transmitted and competing points are called

xk = zkSHk and x′
k = z′kSHk. When performing ML decoding or APP detection, we are interested in the equivalent

Binary Shift Keying (BSK) modulation defined by the two points xk and x′
k. The vector (zk −z′k)SHk has snr circular

symmetric Gaussian components. Thus, whatever the number of erroneous bits on a precoding time period, the obtained

diversity is limited to snr. Having several erroneous bits per precoding time period is useless. On the contrary, if the

erroneous bits are located on different precoding time periods and experience different fading random variables, a higher

diversity is achieved. This is what we call the non-interference property. Furthermore, we will see in section V that

an equi-distribution of erroneous bits on channel states is required to achieve a maximum coding gain. We call it the

equi-distribution property. The ideal interleaver is defined as follows:

Definition 1: (Ideal Interleaving) For any pair of codewords with w different bits at positions i1, . . . , ik, . . . , iw, an

ideal interleaver allocates the bits to transmitted symbols as follows:
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• Non-interference property: ∀ik, ik′ , bits at positions ik and ik′ are transmitted on different precoding time periods,

• Equi-distribution property: the bits at positions i1, . . . , ik, . . . , iw are as equiprobably distributed over all channel

states as allowed by w.

In practice, such an interleaver does not always exist. We will see in the following that the Singleton bound gives

an existence condition of the ideal interleaver. In section VI, we present optimized interleavers that approach the ideal

condition.

B. Exact pairwise error probability for ergodic channels without precoding

In [23], we have established a closed form expression for the conditional pairwise error probability on ergodic MIMO

channels under ML decoding of the BICM and ideal channel interleaving. The mathematical derivation in this subsection

follows [23]. Transmitted symbols are not precoded: s = 1, S = Int the nt × nt identity matrix. Thus, (2) reduces to

Hk = H[1]
k . Consider the pairwise error probability that a codeword c ∈ C is transmitted and a codeword c′ ∈ C is

decoded. The w different bits between the two codewords are transmitted in w different time periods, complementing

one bit in the mapping of one of the nt QAM symbols. The transmitted noiseless vectors corresponding to the two

codewords (c, c′) only differ in w positions. Let us define Z = (z1, . . . , zw) and Z′ = (z′1, . . . , z
′
w) the wnt-dimensional

vectors corresponding to these positions and X = (x1, . . . ,xw) and X′ = (x′
1, . . . ,x

′
w) the wnr-dimensional vectors

corresponding to Z and Z′ and filtered by the channel matrix Hk.

We define dk = ‖zk−z′k‖. The Euclidean distance ‖X−X′‖ depends on both the set of distances {d1, . . . , dk, . . . , dw}

and the set of channel realizations H. Let D denote the set of all Euclidean distances obtained by flipping one bit in

the constellation Ω. Define the set Δ = {δ1, . . . , δnd
} ⊂ D with distinct elements from the sequence (d1, d2, . . . , dw) ∈

Δw ⊂ Dw, i.e., the Euclidean distance dk takes its values from the set Δ. Obviously, nd = |Δ| ≤ |D|. Let the integer λk

denote the frequency of δk in the sequence (d1, d2, . . . , dw),
∑nd

n=1 λn = w and Λ = {λ1, . . . , λnd
}. The pairwise error

probability conditioned on the channel realization set H and the Hamming weight w is expressed as

Pw,H(c → c′) = Pw,H(X → X′) = P

(
w∑

k=1

LLRk < 0

)
(5)

where LLRk is the k-th LLR, corresponding to the k-th error position, and is equal to

LLRk =
‖yk − x′

k‖2 − ‖yk − xk‖2

2N0
∼ N

(
Rk

2N0
,
Rk

N0

)
(6)

Rk = ‖(zk − z′k)Hk‖2 has a chi-square distribution of order 2nr. Averaging over H, we calculate the characteristic
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function of EH [
∑w

k=1 LLRk]:

ψ(jν) =

(
w∏

k=1

(−d2
k

2N0

)−nr
)⎛⎝ nd∏

n=−nd,n�=0

[jν + βn]−nrλ|n|

⎞
⎠ (7)

where ⎧⎪⎪⎨
⎪⎪⎩

n > 0, βn = 1
2

(
1 +

√
1 + 8N0

δ2
n

)
n < 0, βn = 1

2

(
1 −

√
1 + 8N0

δ2
n

) (8)

Applying a partial fraction expansion, we obtain the expression of the pairwise error probability:

Pw(X → X′) = Pw(Δ,Λ) =
w∏

k=1

(
−2N0

d2
k

)nr nd∑
n=1

nrλn∑
i=1

αn,i(
1
2 + 1

2

√
1 + 8N0

δ2
n

)i (9)

where the coefficients αn,i are given by an identification of the coefficients of two series expansions in ε as in [23].

We compute the asymptotic expression when the noise level is low. Indeed, the coding gain and diversity are measured

for high signal-to-noise ratios, where the performance has a linear asymptote on logarithmic scales.

Pw(Δ,Λ) ∼
N0→0

(
2nrw − 1
nrw

) w∏
k=1

(
2N0

d2
k

)nr

=
(

2nrw − 1
nrw

)(
2N0

Gergo(Δ,Λ)

)wnr

(10)

with
(
n
k

)
= n!/(k!(n− k)!). The diversity associated with the considered pairs of Hamming weight w is the exponent

of 2N0, equal to wnr . We define the coding gain or coding advantage as the coefficient dividing 2N0, i.e.,

Gergo(Δ,Λ) =

(
w∏

k=1

d2
k

)1/w

. (11)

All sequences (d1, . . . , dw) corresponding to the same pair (Δ,Λ) yield the same pairwise error probability. By averaging

over all possible pairs (c, c′) or equivalently over all sets of distances Dw, we obtain Pw = EDw [Pw(Δ,Λ)], the

conditional probability that an error event of Hamming weight w occurs. From this pairwise error probability, it is

easy to estimate the FER or BER of the BICM with ideal interleaving thanks to a classical union bound on the weight

enumeration function of the error-correcting code. Moreover, we may derive a design criterion of the BICM from the

coding gain Gergo(Δ,Λ) expression. In the following, we derive the coding gain for block-fading channels and linear

precoding in order to obtain the ML design criterion of the ST-BICM.

C. Exact pairwise error probability for MIMO block fading channels without precoding

We assume that Definition 1 is satisfied. For a block-fading channel with nc independent realizations in a frame, the

decision variable between X and X′ is still given by (5). However, the involved channel matrices are not independent
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as for an ergodic channel. The conditions of independence are the following:

• If two LLR random variables depend on two different channel realizations, they are independent.

• If two LLR random variables depend on the same channel realization but on different transmit antennas, the

random variables are independent.

The maximum number of independent LLR variables is ncnt, the transmit diversity order. We choose the error-

correcting code so that w ≥ ntnc. We now group the w random variables LLR into min(ntnc, w) = ntnc independent

blocks. Let LLRk,l,i be the i-th log-likelihood ratio corresponding to the BSK transmission on the l-th antenna of

the k-th block, k = 1 . . . nc, l = 1 . . . nt and i = 1 . . . κk,l, where κk,l is the number of bits transmitted on the l-th

antenna of the k-th block. We have
∑nc

k=1

∑nt

l=1 κk,l = w. Finally, LLR is the sum of the ntnc independent random

variables LLRk,l =
∑κk,l

i=1 LLRk,l,i. Let dk,l,i denote the distance associated with LLRk,l,i, and define γ2
k,l =

∑κk,l

i=1 d
2
k,l,i

the distance associated with LLRk,l. We have

LLRk,l ∼ N
(
Rk,l

2N0
,
Rk,l

N0

)
, (12)

where Rk,l = γ2
k,l‖Hk(l)‖2 and Hk(l) is the l-th row of Hk. For all i, LLRk,l,i are transmitted over the equivalent 1×nr

SIMO channel defined by Hk(l), which is chi-square distributed with degree 2nr. The LLRk,l variables are transmitted

on independent channel states, as for the ergodic channel case, we directly apply (9) and obtain the conditional pairwise

error probability closed-form expression

Pw(X → X′) = Pw(Δ,Λ) =
nc∏

k=1

nt∏
l=1

(
−2N0

γ2
k,l

)nr nd∑
n=1

nrλn∑
i=1

αn,i(
1
2 + 1

2

√
1 + 8N0

δ2
n

)i , (13)

where δn ∈ Δ and (Δ,Λ) is the pair of sets representing the sequence (γ1,1, . . . , γnt,nc). The αn,i coefficients are

computed as for (9).

The asymptotic expression of Pw(Δ,Λ) is

Pw(Δ,Λ) ∼
N0→0

(
2nrntnc − 1
nrntnc

) nc∏
k=1

nt∏
l=1

(
2N0

γ2
k,l

)nr

. (14)

The diversity associated with the considered pairs of Hamming weight w is then equal to the exponent ntncnr. The

coding gain is given by the geometrical mean of the γ2
k,l and is equal to

Gbf (Δ,Λ) =

(
nc∏

k=1

nt∏
l=1

κk,l∑
i=1

d2
k,l,i

)1/(ntnc)

. (15)
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We will see in the following how to use this coding gain as a design criterion for the ST-BICM optimization. We now

consider an equivalent computation of the coding gain for a linearly precoded ST-BICM.

D. Exact pairwise error probability for MIMO block fading channels with precoding

When a linear precoder S of size Nt ×Nt is used, the detector computes soft outputs on the Nt transmitted symbols

using the equivalent channel matrix SHk of size Nt × Nr. The structure of Hk is described in (2). SHk can be seen

as a correlated MIMO channel [43]. Under the ideal interleaving condition, we consider at most a single erroneous bit

per block of s time periods in position 1 ≤ � ≤ mNt inside the binary mapping of the transmitted symbol z, leading

to symbol z̄�. For simplicity reasons, we assume that the error weight w satisfies w ≥ NtNc. Moreover, we assume that

the mapping is mono-dimensional: the BSKs are transmitted on a single selected input of the matrix SHk. Let LLRk,l,i

be the i-th variable among κk,l, corresponding to the transmission of a BSK on the equivalent 1 ×Nr channel SlHk,

where Sl corresponds to the l-th row of S. We have
∑Nc

k=1

∑Nt

l=1 κk,l = w. Let dk,l,i denote the BSK distance associated

with LLRk,l,i. We can use the factorization LLRk,l =
∑κk,l

i=1 LLRk,l,i of all the LLR variables filtered with SlHk:

LLRk,l ∼ N
(
Rk,l

2N0
,
Rk,l

N0

)
, (16)

where Rk,l = ‖Vk,lHk‖2, Vk,l = γk,lSl and γ2
k,l =

∑κk,l

i=1 d
2
k,l,i. The variable Rk,l is a generalized chi-square random

variable with 2Nr correlated centered Gaussian components. The random variable LLRk =
∑Nt

l=1 LLRk,l satisfies

LLRk ∼ N
(∑Nt

l=1Rk,l

2N0
,

∑Nt

l=1Rk,l

N0

)
. (17)

From appendix ??, we get the following characteristic function:

EHk
[ΨLLRk

(jν)] =
ns∏
t=1

nt∏
u=1

(
1 − ν(j − ν)

2N0
ϑ

[t]
k,u

)−nr

, (18)

where ϑ[t]
k,u is the u-th eigenvalue of

Σ[t]
k =

Nt∑
l=1

γ2
k,lS

′[t]∗
l S′[t]

l =
Nt∑
l=1

γ2
k,l

s/ns∑
i=1

S[t][i]∗
l S[t][i]

l = M[t]∗
k M[t]

k . (19)
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M[t]
k is as an nt ×nt Hermitian square root matrix of Σ[t]

k and row vectors S[t][i]
l of size nt and s/ns ×nt matrices S′[t]

l

are defined from S as follows:

S =

S[1]
l (1 ×Nt/ns) S[ns]

l⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

︷ ︸︸ ︷
S[1][1]

1 · · · S[1][s/ns]
1

S[1][1]
2 · · · S[1][s/ns]

2

...

S[1][1]
Nt︸ ︷︷ ︸ · · · S[1][s/ns]

Nt︸ ︷︷ ︸

· · ·

· · ·

︷ ︸︸ ︷
S[ns][1]

1 · · · S[ns][s/ns]
1

S[ns][1]
2 · · · S[ns][s/ns]

2

...

S[ns][1]
Nt︸ ︷︷ ︸ · · · S[ns][s/ns]

Nt︸ ︷︷ ︸

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

Nt/s = nt coefficients

and

S′[t]
l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S[t][1]
l

S[t][2]
l

...

S[t][s/ns]
l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

The set of eigenvalues ϑ[t]
k,u is a function of the precoding matrix S and the BSK distances set Dw. Thanks to the

independence of channel realizations for different k values, we can multiply the characteristic functions:

Ψ(jν) =
Nc∏
k=1

ns∏
t=1

nt∏
u=1

(
1 − ν(j − ν)

2N0
ϑ

[t]
k,u

)−nr

. (22)

We denote Δ = {δv} the set of nδ square-roots of non-null eigenvalues extracted from the sequence defined by the

ϑ
[t]
k,u values. Each eigenvalue δ2v is repeated λv times. We observe that nδ ≤ ncnt. Finally, using the partial fraction

expansion of Ψ(jν) as for (9), we obtain the exact pairwise error probability Pw(Δ,Λ) conditioned on dH(c, c′) = w:

Pw(Δ,Λ) =
nδ∏

v=1

(
−2N0

δ2v

)λvnr nδ∑
v=1

nrλv∑
i=1

αv,i(
1
2 + 1

2

√
1 + 8N0

δ2
v

)i . (23)

The asymptotic expression of Pw(Δ,Λ) is

Pw(Δ,Λ) ∼
N0→0

(
2nrNδ − 1
nrNδ

) nδ∏
v=1

(
2N0

δ2v

)λvnr

, (24)

where Nδ =
∑nδ

v=1 λv is the total number of non-null eigenvalues.

The diversity associated with the considered pairs of Hamming weight w is the exponent equal to
∑nδ

v=1 λvnr = Nδnr.
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The coding gain is given by

Gs,ns(Δ,Λ) =

(
nδ∏

v=1

δ2λv
v

)1/Nδ

. (25)

We have derived for any signal-to-noise ratio an exact expression of the pairwise error probabilities of a BICM with

linear precoding, which is useful for a tight BER and FER estimation. The asymptotic expression leads to the well-

known rank and determinant criteria [40][19] for space-time code optimization over MIMO block-fading channels, where

the considered space-time code is the whole BICM structure. As a remark, the asymptotic design criterion is usually

derived by first upperbounding the Q(x) function by exp(−x2/2)/2 and then averaging over the channel realizations.

The obtained asymptotic expression has a multiplying coefficient different from
(
2nrNδ−1

nrNδ

)
, which is inexact but provides

the same design criterion.

Moreover, we notice that applying the Tarokh criterion [40] on the rank and determinant to the precoder alone does

not lead to the whole BICM optimization. Quasi-optimal linear precoders will be designed to achieve full diversity and

approach optimal coding gain in section V.

E. Evaluation of the Frame Error Rate

For ergodic channels, the frame error rate is easily computed via a union bound. Indeed, only error events with

minimum Hamming distance impact the error rate for a high signal-to-noise ratio and the observed diversity is equal

to nrdHmin. For block-fading channels, the frame error rate computation is much more tricky since each pairwise error

probability is supposed to have the full-diversity order ncntnr. Due to the random nature of each eigenvalue in (25),

it is difficult to know the impact of each distance configuration on the final FER.

However, one may assume that for a sufficiently high signal-to-noise ratio, the FER satisfies the following expression:

FER 

∑
w

AwE(Δ,Λ|w) [Pw(Δ,Λ)] , (26)

where Aw is weighting the impact of pairwise error probabilities with Hamming weight w in the global error probability

and the expectation on (Δ,Λ) is allowed by the interleaver random structure. Let us define G the global coding gain.

Since each pairwise error probability is supposed to have full diversity, we write

FER 

(

2nrntnc − 1
nrntnc

)(
2N0

G
)nrntnc

(27)
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and

G−nrntnc =
∑
w

AwE(Δ,Λ|w)

[G(Δ,Λ)−nrntnc
]
, (28)

where G(Δ,Λ) is the coding gain associated with one pair of codewords. We note that optimizing independently all

pairwise error probabilities, which will be done in the following, enhances the global performance. Moreover, we observe

that the number of receive antennas does not affect the coding gain of a single pairwise error probability. The effect

of the receive diversity appears in the expression of the global coding gain (28). As nrntnc grows, the smallest coding

gains have more impact on the final performance. Asymptotically, if nrntnc → +∞, only the nearest neighbors in the

Euclidean code have an influence on the FER, as for AWGN channels.

We will see in section V-A that the best coding gain is achieved when all eigenvalues ϑ[t]
k,u are equal. In this ideal

configuration, the coding gain is shown to be the same as with the same coded modulation transmitted on a 1×ncntnr

quasi-static SIMO channel. Simulating this latter case is less complex: the performance curve is semi-analytically

computed using a reference curve on an AWGN channel. Alternatively, performance may be obtained by computing

the tangential sphere bound for spherical modulations [27]. In the following, ideal BICM will refer to the performance

of the ideal configuration, which will be drawn on simulation results. This lower bound has the advantage to take the

modulation and error correcting code into account and will be useful to evaluate the optimality of both the linear

precoder and the channel interleaver.

IV. The Singleton bound with linear precoder

Definition 1 ensures that any pair of codewords benefits from a full diversity order. In this section, we derive a

condition on the existence of a practical interleaver that could achieve the conditions of Definition 1. Let us first make

the following assumption:

Assumption 1: The detector perfectly converts the Nt × Nr correlated MIMO Nc-block-fading channel SHk with

QAM input into a 1 × snr SIMO ntnc/s-block-fading channel with BSK input, assuming that s is a divisor of ntnc.

We will present in section V linear precoders that satisfy Assumption 1. Under this condition, the detector collects an

amount of diversity equal to snr. The full diversity ntncnr is collected by the detector when s = ntnc, but unfortunately,

the APP signal detection has an exponential complexity in s. On the other hand, the BICM channel decoder is also

capable of collecting a large amount of diversity, but the latter is still limited by the Singleton bound [29][30][34]. Hence,

the lowest complexity solution that reaches full diversity is to draw advantage of the whole channel code diversity and
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recover the remaining diversity by linear precoding. The best way to choose the spreading factor s is given by the

Singleton bound described hereafter.

The studied ST-BICM is a serial concatenation of a rate RC binary convolutional code C, an interleaver of size

NCLC bits, and a QAM mapper followed by the precoder as described in section II. When S is the identity matrix, the

ST-BICM diversity order is upper-bounded by [30]:

Υ ≤ nr (�ncnt(1 −Rc) + 1) . (29)

The maximal diversity given by the outage limit under a finite size QAM alphabet also achieves the above Singleton

bound [25]. With a vanishing coding rate, i.e., Rc ≤ 1/(ncnt), it is possible to attain the overall system diversity order

nrncnt produced by the receive antennas, the transmit antennas and the distinct channel states. Unfortunately, this is

unacceptable due to the vanishing transmitted information rate. Precoding is one means to achieve maximum diversity

with a non-vanishing coding rate.

The integer Nb = ncnt/s is the best diversity multiplication factor to be collected by C. The length of a C codeword

is LCNC binary elements. Let us group LCNC/Nb bits into one non-binary symbol creating a non-binary code C′. Now,

C′ is a length-Nb code built on an alphabet of size 2LCNC/Nb . The Singleton bound on the minimum Hamming distance

of the non-binary C′ becomes DH ≤ Nb − �NbRC� + 1. Multiplying the previous inequality with the Nakagami law

order snr yields the maximum achievable diversity order after decoding [22]:

Υ ≤ snr

⌊ncnt

s
(1 −RC) + 1

⌋
. (30)

Finally, since Υ is upper-bounded by the channel intrinsic diversity and the minimum Hamming distance dHmin of the

binary code, we can write

Υ ≤ min
�
snr

�ncnt

s
(1 − RC) + 1

�
; ntncnr; snrdHmin

�
= Υmax. (31)

If dHmin is not a limiting factor (we choose C accordingly), we can select the value of s that leads to a modified

Singleton bound greater than or equal to ntncnr.

Proposition 1: Considering a BICM with a rate RC binary error-correcting code on an nt × nr MIMO channel with

nc distinct channel states per codeword, the spreading factor s of a linear precoder must be a divisor of ntnc and
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must satisfy s ≥ RCncnt in order to achieve the full diversity ntncnr for any pair of codewords. In this case, the ideal

interleaving conditions can be achieved with an optimized interleaver.

The smallest integer sopt satisfying the above proposition minimizes the detector’s complexity. If RC > 1/2, then

sopt = ncnt which involves the highest complexity. If RC ≤ 1/(ncnt), linear precoding is not required.

Tables I and II show the diversity order derived from the Singleton bound versus s and nt, for nc = 1 and nc = 2

respectively. The values in bold indicate full diversity configurations. For example, in Table I, for nt = 4, s = 2 is a

better choice than s = 4 since it leads to an identical diversity order with a lower complexity.

V. Linear precoder optimization

Many studies have been published on space-time spreading matrices introducing some redundancy, a technique known

as space-time block coding. On one hand, some of them are decoded by a low-complexity ML decoder, but they sacrifice

transmission data rate for the sake of high performance. Among them, the Alamouti scheme [1] is the most famous, but

is only optimal for a 2 × 1 MIMO channel. The other designs allowing for low ML decoding complexity are based on

an extension of the Alamouti principle (e.g., double space-time transmit diversity [42]) but also sacrifice the data rate.

On the other hand, full rate space-time codes have recently been proposed [4][11][12][13][14][18][35]. However, their

optimization does not take into account their concatenation with an error-correcting code. In this section, we describe

a near-ideal solution for linear precoding in BICMs under iterative decoding process. Our strategy is to separate the

coding step and the geometry properties in order to express some criteria allowing for the construction of a space-

time spreading matrix for given channel parameters nt, nr and nc. The inclusion of rotations to enhance the BICM

performance over single antenna channels has been proposed in [32]. Our solution uses this concept for designing a

space-time code including a powerful error-correcting code.

When the channel is quasi-static or block-fading with parameter nc, the diversity is upper bounded by ncntnr which

may be more limiting than nrdHmin (e.g., nt = 2, nr = 1, nc=1). We introduce a new design criterion of space-time

spreading matrices that guarantees a diversity proportional to the spreading factor, within the upper-bound, and a

maximal coding gain at the last iteration of an iterative joint detection and decoding.

A. Coding gain under both ideal interleaving and precoding

First we look for the best achievable coding gain for fixed parameters nt, nr, nc, RC and the appropriate way to

choose the error-correcting code, the binary mapping, the linear precoder and its parameters s and ns to achieve the
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ideal coding gain.

We want to achieve full diversity under ML decoding or iterative joint detection and decoding, this induces that

there are ncnt non-null eigenvalues ϑ[t]
k,u (see (24)):

Gs,ns(Δ,Λ) =

(
Nc∏
k=1

ns∏
t=1

nt∏
u=1

ϑ
[t]
k,u

)1/(ncnt)

. (32)

Furthermore, we want to maximize the Gs,ns(Δ,Λ) expression. Assuming that each row Sl is normalized to 1, we get

Nc∑
k=1

ns∑
t=1

nt∑
u=1

ϑ
[t]
k,u =

Nc∑
k=1

Nt∑
l=1

γ2
k,l =

Nc∑
k=1

Nt∑
l=1

κk,l∑
i=1

d2
k,l,i. (33)

Under this condition, the ideal coding gain is achieved when all eigenvalues are equal

ϑ
[t]
k,u =

Nc∑
k′=1

Nt∑
l=1

γ2
k′,l

ntnc
∀(k, t, u), (34)

which leads to

Gideal(Δ,Λ) =
Nc∑
k=1

Nt∑
l=1

γ2
k,l

ntnc
=

w∑
i=1

d2
i

ntnc
. (35)

The exact pairwise error probability expression simplifies to the classical expression of the performance of a BPSK

with distance
∑w

j=1 d
2
j over a diversity channel with order ncntnr [37]:

Pw,ideal(Δ, Λ) =

�
�1 −

�
1 +

8N0ntnc�w
j=1 d2

j

	−1/2


�

ncntnr
ncntnr−1�

k=0


ncntnr+k−1

k

�
2ncntnr+k

�
�1 +

�
1 +

8N0ntnc�w
j=1 d2

j

	−1/2


�

k

. (36)

As stated in the introduction, in an ST-BICM, precoded modulation symbols quantify the Shannon sphere and the

best quantization is obtained by uniformly distributing them on the sphere. After transmission on a fading channel,

vectors belong to an ellipsoid obtained by applying an homothety on the sphere. From (34) and (35), we see that

the ideal coding gain is obtained by equally distributing the Euclidean distance between two codewords among the

ntnc channel states. Hence, the Euclidean distance varies as a ntncnr Nakagami distribution, according to the square

norm of the ellipsoid axes. Thus, an ideal ST-BICM aims at uniformly distributing the precoded modulation symbols,

whatever the channel realization, i.e., whatever the homothety. The ideal coding gain is a fundamental limit which

cannot be outperformed. It is useful to evaluate how optimal the practical design of a BICM is. We aim at finding

the best design, corresponding to eigenvalues which are as close to each other as possible. The more different from

each other the eigenvalues are, the lower the product in (32) and the coding gain are. From (35), we see that the ideal
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coding gain is the same as for the same coded modulation transmitted on a 1 × ncntnr single-input multiple-output

(SIMO) channel, applying the appropriate Eb/N0 normalization.

Without linear precoding, the ideal coding gain is only achieved if all γk,l are equal. Remember that each γk,l is a

sum of κk,l distances dk,l,i. Thanks to the second point in Definition 1, the κk,l values are close to w/(ntnc) and their

variance decreases when w increases. Thus, with a powerful error-correcting code having minimum Hamming distance

much greater than ntnc and |D|, each γk,l value is almost equal to the average
∑Nc

k=1

∑Nt

l=1

∑κk,l

i=1 d
2
k,l,i/(NtNc) of dk,l,i

values and quasi-ideal coding gain is observed.

If the error-correcting code is not powerful enough to achieve the ideal coding gain, i.e., the γk,l values are very

different, the linear precoder provides an additional coding gain by averaging the γk,l values, as we will see in the

following. First, we derive the optimal coding gain which can be achieved using an ideal linear precoder for a given

binary labeling and error-correcting code. Variables γk,l for different k values correspond to independent channel

realizations Hk which are not linked by the linear precoder. Thus, random variables
∏ns

t=1

∏nt

u=1 ϑ
[t]
k,u are independent

for distinct values of k. The optimal coding gain with linear precoding is

Gs,ns,opt(Δ,Λ) =
Nc∏
k=1

(
Nt∑
l=1

γ2
k,l

ntns

)1/Nc

. (37)

Equation (37) means that an optimal linear precoder is capable of making eigenvalues equal for a same k. However,

for different values of k, eigenvalues ϑ[t]
k,u are different, which induces a coding gain loss. When the mapping and error-

correcting code are given and the interleaving is ideal, the choice of linear precoding parameters impacts on optimal

coding gain. Let us consider codewords that are equidistant from the transmitted codeword, i.e., a set of distance

configurations corresponding to a same value of
∑

k,l γ
2
k,l. The variance of

∑Nt

l=1 γ
2
k,l/(ntns) over this set decreases

when ns increases, as the number of distances building each γk,l is higher. The lower the variance of eigenvalues,

the higher the coding gain. Thus, Gs,ns,opt(Δ,Λ) is an increasing function of ns and, for a given s, we should choose

ns = min(s, nc). The optimal coding gain Gs,min(s,nc),opt(Δ,Λ) is an increasing function of s. If ns = nc, which implies

s = ntnc, the ideal coding gain is achieved by the optimal precoder. Finally, we can surround the coding gain at full

diversity as follows:

∀s Gideal(Δ,Λ) ≥ Gs,min(s,nc),opt(Δ,Λ) ≥ Gs,1,opt(Δ,Λ) ≥ G1,1,opt(Δ,Λ) ≥ Gbf (Δ,Λ). (38)
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If, for any pairwise error probability, Gbf (Δ,Λ) 
 Gideal(Δ,Λ), the linear precoder optimization is useless from a

coding gain point-of-view. However, obtaining near-ideal coding gain without precoding requires an optimization of the

error-correcting code and mapping for any pairwise error probability, which is intractable for non-trivial modulations

and codes. Furthermore, the first objective of linear precoding is the diversity control, which has a high influence on

the performance even at medium FER (10−2 ∼ 10−3), especially for low diversity orders. Therefore, precoding is often

useful in the BICM structure.

After the impact of the linear precoding for a given pairwise error probability, let us consider the behavior of the global

performance under linear precoding. As stated in section III-E, if nrntnc grows, the pairs of codewords providing the

smallest coding gains have more impact on the final performance. Since the linear precoder provides a more substantial

gain for the low Hamming weight configurations, the coding gain of the linear precoder will be magnified as the diversity

grows.

a) Example of ideal coding gain:: In order to illustrate the role of the linear precoding in the coding gain

optimization, we consider a 2× 1 quasi-static MIMO channel and a pairwise error probability between two codewords

separated by a Hamming distance of w bits. Fig. 3 represents the distribution of the two γ1 and γ2 values over the

two transmit antennas without linear precoding. Bits transmitted on antennas 1 and 2 are transmitted on the sets of

time periods T1 and T2, respectively. Thanks to ideal interleaving, T1

⋂
T2 = ∅. This illustrates the factorization of the

distances into the γ values. The instantaneous coding gain is equal to
√
γ2
1γ

2
2 . Now let us consider a specific linear

precoder, which spreads the values γ1 and γ2 as presented in Fig. 4 over two time periods and two transmit antennas

dividing the squared distance in two equal parts γ2
1/2 and γ2

2/2 respectively. The average value (γ2
1+γ2

2)/2 is transmitted

on each antenna, the coding gain is optimal and equal to (γ2
1 + γ2

2)/2. For example, consider a BPSK modulation and

a pairwise error probability with Hamming weight 3. With optimal linear precoding, the ideal interleaving provides for

example γ2
1 = 2× 22 and γ2

2 = 1× 22. With optimal linear precoding, we have a distance (2× 22 + 1× 22)/2 associated

with each antenna. The ratio between the two averaged coding gains is equal to
√

9/8, i.e., we expect a gain of 0.26 dB

when using linear precoding. With w = 5 and w = 11, the coding gain becomes 10 log10(
√

24/25) 
 0.09 dB and

10 log10(
√

120/121) 
 0.02 dB, respectively. The higher the Hamming weight involved in the pairwise error probability

is, the less the coding gain provided by linear precoding is. �

We see in Table III the best gain to be provided by linear precoding for a quasi-static channel with BPSK input with
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respect to a full diversity unprecoded scheme. These gains are particularly low because the error-correcting code aims

at recovering a large amount of coding gain. This illustrates that BICMs are very efficient transmission schemes. As a

remark, if a modulation with higher spectral efficiency is used with Gray mapping, the nearest neighbor in the Euclidean

code has the same distance configuration as if a BPSK modulation was used. Moreover, for high diversity orders, the

global error rate for high Eb/N0 will be dominated by the neighbors and the gain provided by linear precoding will be

very close to the ones shown in Table III. However, if the diversity is low, the gains provided by linear precoding may

be much more important. Let us assume that a 16-QAM modulation with Gray mapping is transmitted on a nt = 2

quasi-static channel. For instance, if w = 5, there exists a neighbor with distance configuration (3A, 3A, 3A,A,A)

(e.g., see [23]), and γ2
1 = 9A2 + 9A2 + 9A2, γ2

2 = A2 + A2. The gain to be provided by linear precoding is equal to

10 log10(29/2/
√

54) = 2.95 dB. As already stated, the final coding gain is equal to a weighted sum of all coding gains,

where the weighting coefficients cannot be easily computed in the case of low diversity orders.

Even if linear precoding does not always provide a substantial coding gain, its prior aim is the diversity order control.

Thus, we will focus on the design of linear precoders aiming at reaching full diversity and maximizing the coding gain

for any set of parameters (nt, s, ns).

B. A new class of linear precoders

Under linear precoding, the optimal coding gain is achieved if all ϑ[t]
k,u variables are equal for a same k. Let us first

consider the eigenvalues associated with the independent realizations in the spreading matrix, indexed by t. First, two

matrices M[t1]
k and M[t2]

k , as introduced in (19), should have the same eigenvalues, which is satisfied if ∀(t1, t2),M
[t1]
k =

Rt1,t2∗M[t2]
k Rt1,t2 , where Rt1,t2 is a unitary matrix, for example a rotation. Hence, ∀(t1, t2),S′[t1]

l = S′[t2]
l Rt1,t2 . The

precoding sub-part S[t1]
l , with spreading factor s′ = s/ns, experiences a quasi-static channel. We assume that s′ is an

integer, divisor of nt. It is sufficient to design the first sub-part of the precoder matrix rows for a quasi-static channel

and rotate it to compute the other sub-parts. Furthermore, any choice of Rt1,t2 leads to the same performance because

eigenvalues remain unchanged. The condition simplifies to ‖S′[t1]
l ‖ = ‖S′[t2]

l ‖.

Let us now optimize for a given index t the equivalent precoder over the quasi-static channel diag
(
H[t]

k , . . . ,H
[t]
k

)
, in

which H[t]
k is repeated s′ times. If all eigenvalues of M[t]

k M[t]∗
k are equal, M[t]

k and M[t]∗
k are weighted unitary matrices
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and

M[t]
k M[t]∗

k = M[t]∗
k M[t]

k =
Nt∑
l=1

γ2
k,l

s′∑
i=1

S[t][i]∗
l S[t][i]

l . (39)

Matrix S[t][i]∗
l S[t][i]

l has rank one and matrix
∑s′

i=1 S[t][i]∗
l S[t][i]

l has maximum rank s′. If s′ < nt, it can be shown that

it is impossible to get all eigenvalues equal to
∑Nt

l=1 γ
2
k,l/ntns as required in order to achieve the optimal coding gain.

However, in order to insure that M[t]
k M[t]∗

k has a rank nt and that the eigenvalues are as equal as possible, we group

ss′ values γk,l together and associate them with one of the nt/s
′ groups of s′ eigenvalues: we denote S[t][i][j]

l the j-th

sub-part of size s′ of S[t][i]
l and {l2, l1} the index of the (l2 − 1)ss′ + l1-th row of S, where l2 ∈ [1, nt/s

′], l1 ∈ [1, ss′].

Let us assume that S[t][i]
{l2,l1} has only one non-null sub-part in position l2, i.e.,

∀j �= l2 S[t][i][j]
{l2,l1} = [0, . . . , 0]. (40)

Considering such a structure is equivalent to considering separate precoding on nt/s
′ distinct groups of s′ transmit

antennas. We have

Nt∑
l=1

γ2
k,lS

′[t]∗
l S′[t]

l =
nt/s′∑
l2=1

ss′∑
l1=1

γ2
k,{l2,l1}

s′∑
i=1

S[t][i]∗
{l2,l1}S

[t][i]
{l2,l1} (41)

=
nt/s′∑
l2=1

ss′∑
l1=1

γ2
k,{l2,l1}Dl2

⎛
⎝ s′∑

i=1

S[t][i][l2]∗
{l2,l1} S[t][i][l2]

{l2,l1}

⎞
⎠ 1 (42)

where Dl2(A) is a block diagonal matrix with only one non-null block A in position l2. We choose S[t][i][l2]
{l2,l1} proportional

to the i-th row of a s′ × s′ unitary matrix, such as ‖S[t][i][l2]
{l2,l1} ‖2 = 1/s:

Nt∑
l=1

γ2
k,lS

′[t]∗
l S′[t]

l =
nt/s′∑
l2=1

ss′∑
l1=1

γ2
k,{l2,l1}Dl2

(
1
s
Is′

)
(43)

=
1
s

ss′∑
l1=1

diag
(
γ2

k,{1,l1}Is′ , . . . , γ2
k,{nt/s′,l1}Is′

)
1 (44)

which leads to

l2 ≤ nt/s
′, u ≤ s′, ϑ

[t]
k,(l2−1)ss′+u =

1
s

ss′∑
l1=1

γ2
k,{l2,l1} (45)

The random variables γ2
k,{l2,l1} are independent and identically distributed for different values of l1 and l2, the coding

gain is

Gs,ns(Δ,Λ) =
Nc∏
k=1

nt/s′∏
l2=1

⎛
⎝ ss′∑

l1=1

γ2
k,{l2,l1}
s

⎞
⎠s′/(Ncnt)

. (46)

For any value of ns, the gain expressed in (46) is a geometric mean of order ntnc/s. For a given realization
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{d1, . . . , dw}, a given s and for any ns,
∑Nc

k=1

∑nt/s′

l2=1

∑ss′

l1=1 γ
2
k,{l2,l1} Thus

∑ss′

l1=1 γ
2
k,{l2,l1} are constant, ensuring the

same coding gain. However, such a precoder does not achieve the optimal coding gain for any value of s′. The summation

is made over ss′ different values whereas the optimal coding gain in (37) necessitates a summation over snt values. Only

if ss′ is high enough, the obtained coding gain is almost optimal. If s′ = nt, the complete spatial transmit diversity is

collected by the detector and the optimal coding gain is achieved.

Proposition 2: Dispersive Nucleo Algebraic (DNA) Precoder Let S be the Nt × Nt precoding matrix of a

BICM over a nt × nr MIMO nc-block-fading channel. Let us assume that S precodes a channel block diagonal matrix

with s blocks and ns channel realizations. We denote s the spreading factor, Nt = snt and s′ = s/ns. Let S[t]
l be the

t-th sub-part of size Nt/ns of the l-th row of S, S[t][i]
l be the i-th sub-part of size nt of S[t]

l , and S[t][i][j]
l be the j-th

sub-part of size s′ of S[t][i]
l . The sub-part S[t][i][j]

l is called nucleotide. The linear precoder guarantees full diversity and

quasi-optimal coding gain at the decoder output under maximum likelihood decoding of the BICM if it satisfies the

two conditions of null nucleotides and orthogonal nucleotides for all t ∈ [1, ns], i ∈ [1, s′], l1 ∈ [1, ss′], l2 ∈ [1, nt/s
′] and

{l2, l1} = (l2 − 1)ss′ + l1:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀j �= l2, j ∈ [1, nt/s
′], S[t][i][j]

{l2,l1} = 01×s′ Null Nucleotide condition

∀i′ �= i, i′ ∈ [1, s′], S[t][i][l2]
{l2,l1} S[t][i′][l2]∗

{l2,l1} = 1
sd(i− i′) Orthogonal Nucleotide condition

(47)

where d(0) = 1 and d(x �= 0) = 0.

Let us take for example nt = 4, ns = 1 and s = 2. A DNA matrix would have the following structure:

DNA(nt = 4, ns = 1, s = 2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S[1][1][1]
{1,1} 0 S[1][2][1]

{1,1} 0

S[1][1][1]
{1,2} 0 S[1][2][1]

{1,2} 0

S[1][1][1]
{1,3} 0 S[1][2][1]

{1,3} 0

S[1][1][1]
{1,4} 0 S[1][2][1]

{1,4} 0

0 S[1][1][2]
{2,1} 0 S[1][2][2]

{2,1}

0 S[1][1][2]
{2,2} 0 S[1][2][2]

{2,2}

0 S[1][1][2]
{2,3} 0 S[1][2][2]

{2,3}

0 S[1][1][2]
{2,4} 0 S[1][2][2]

{2,4}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

Now, let us consider a linear precoder matrix S that satisfies Proposition 2. We build a ss′ ×Nr matrix H{i}
k from
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the rows of Hk corresponding to the i-th group of s′ transmit antennas. Elements of H{i}
k are defined as follows:

∀i = 0 . . . nt/s
′ − 1, ∀j = 0 . . . s′ − 1, ∀u = 0 . . . s− 1, ∀v = 0 . . .Nr − 1,

H{i}
k (j + us′, v) = Hk(j + unt + is′, v). (49)

Likewise, S{i} is the ss′×ss′ matrix obtained from the i-th block of ss′ rows of S and every nt/s
′-th block of s′ columns

beginning with the i-th block. We easily show that

SHk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S{1}H{1}
k

S{2}H{2}
k

...

S{nt/s′}H{nt/s′}
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (50)

which means that the matrix S independently precodes the nt/s
′ groups of transmit antennas.

Thus, the optimization may be split into nt/s
′ independent optimizations of linear precoders for s′ × nr MIMO ns-

block-fading channels with linear spreading factor s. As s = s′ns, full space-time spreading of the s′ × nr block-fading

channel is performed, i.e., the maximum diversity order snr is collected by the detector.

From (15) and (46), we notice that, at the decoder input and under ideal interleaving condition, the linear precoder

at the transmitter end and the detector at the receiver end allow the conversion of the nt ×nr MIMO channel with nc

independent blocks into a 1 × snr SIMO channel with ncnt/s independent blocks with BSK input. The independence

of the blocks is provided by the structure of the linear precoding matrix:

1) The null nucleotides dispatch the transmitted symbols on nt/s
′ different blocks of s′ antennas.

2) The orthogonal nucleotides provide full diversity and a coding gain increasing with the spreading factor.

For instance, if a rate 1/2 BICM is transmitted on a quasi-static 4×2 MIMO channel, linear precoding with s = 2 is

required to achieve full diversity: a full-rate space-time block code with spreading factor s = s′ = 2 may independently

be applied on 2 separate groups of 2 transmit antennas. Good 2× 2 space-time block codes are for instance the TAST

[12] and the Golden code [4].

Let us assume that nc = 1, nt = nr = 2 and s = s′ = 2. The Golden code is the best space-time code for uncoded

2 × 2 quasi-static MIMO channels. However, it does not satisfy the equal norm property of orthogonal nucleotides
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in Proposition 2. Indeed, one row of the Golden linear precoder contains two non-null coefficients of square norm

α1 = 0.277 and α2 = 0.723, respectively. Thus (46), which assumes equality between the eigenvalues of M[t]
k M[t]∗

k , does

not hold. It can be shown that (let γ2
i = γ2

1,{1,i})

GGolden(Δ,Λ) =
√

(α1 (γ2
1 + γ2

4) + α2 (γ2
2 + γ2

3)) (α1 (γ2
2 + γ2

3) + α2 (γ2
1 + γ2

4)) , (51)

where γ2
i = γ2

1,{1,i}. As dHmin increases, (γ2
1 + γ2

4)/(γ2
2 + γ2

3) tends to 1 for any pairwise error probability and

GGolden(Δ,Λ) → G2,1,opt(Δ,Λ): The error-correcting code limits the coding loss due to the non-equal norm of the sub-

parts of the Golden code. As a remark, if γ2
2 + γ2

3 = 0, which is the worst case, the coding loss is 10 log10(
√
α1α2/4) =

0.5 dB.

With DNA precoder and ideal interleaving, Assumption 1 is satisfied and the modified Singleton bound on the

diversity order can apply. All results from the field of error correction coding over block-fading channels directly apply

without any modification to the new 1 × snr SIMO channel with ntnc/s independent blocks.

C. The genie method design criterion for full spreading linear precoders (s′ = nt)

A linear precoding design criterion based on the genie performance optimization at the detector output has been

proposed in [8]. When a genie gives a perfect information feedback on the mnt coded bits required in the APP detector

computation, the performance is computed by averaging all pairwise error probabilities obtained when changing only

one bit out of mnt. Let us denote d the distance of the BSK and assume that the BSK is transmitted on antenna l.

The asymptotic expression of the error probability with genie is

Pgenie(Δ,Λ) ∼
N0→0

(
2nrNδ − 1
nrNδ

) nδ∏
v=1

(
δ2v

2N0

)−nrλv

, (52)

where Δ = {δv} is the set of square-roots of distinct non-null eigenvalues of d2S′[t]∗
l S′[t]

l for all t, λv their frequency and

Nδ their number. In the best case, there are s non-null eigenvalues and the coding gain is maximized if they are equal.

First, a sufficient condition for equality between the eigenvalues of S′[t1]∗
l S′[t1]

l and S′[t2]∗
l S′[t2]

l is ‖S′[t1]
l ‖2 = ‖S′[t2]

l ‖2.

Then, all eigenvalues of S′[t]∗
l S′[t]

l are equal if S′[t]
l is a unitary matrix, which leads to the following proposition:

Proposition 3: A linear precoder achieving a diversity order snr with maximum coding gain at the detector output

must satisfy the following conditions under perfect iterative APP decoding of the space-time BICM:

1) The ns subparts of the rows in the snt × snt precoding matrix have the same Euclidean norm

2) In each of the ns subparts, the s subparts (nucleotides) are orthogonal and have the same Euclidean norm
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Proposition 3, which is more intuitive, is equivalent to Proposition 2 only if s′ = nt, i.e., in case of full spreading.

D. Non-full spreading quasi-optimal linear precoder: DNA cyclotomics

If s′ �= nt, Proposition 3 is not optimal in terms of maximum likelihood performance. However, we can split the

optimization of a Nt ×Nt linear precoder with spreading factor s into nt/s
′ optimizations of full spreading N ′

t × N ′
t

linear precoders with N ′
t = s′s. The optimization of S is now done in two steps:

1) Apply the genie method to design a full spreading N ′
t ×N ′

t linear precoder for a s′ × nr MIMO channel with ns

blocks, satisfying Proposition 3,

2) Place the non-null sub-parts in S as described in Proposition 2.

Cyclotomic rotations [6] provide good performance on ergodic Rayleigh SISO channels and have the great advantage

of existing for any number of complex dimensions. Moreover, any coefficient has a unity norm which implies that the

norm condition of Proposition 3 is naturaly satisfied. We modified the cyclotomic matrices to satisfy the orthogonality

condition in the case of full spreading s = ntns. The coefficients of S are equal to

Sl,v+(i−1)nt+(t−1)n2
t

=

1√
Nt

exp
(
2jπ

[
(l − 1)

(
1

Φ−1(2Nt)
+ (t−1)n2

t+(i−1)nt+v−1
Nt

)
+ (i− 1)

(
1

Φ−1(2nt)
+ v−1

nt

)]) (53)

We denote S(nt, ns, ntns) the modified cyclotomic rotation designed for a nt×nr MIMO block-fading channel, assuming

that the precoder experiences ns channel realizations. The last parameter in S(nt, ns, ntns) denotes the spreading factor.

In order to satisfy Proposition 2, which gives the design criterion for non-full spreading quasi-optimal linear precoders,

we follow the two steps described above. Following (53), we first construct S(s′, ns, s) designed for full spreading of a

s′ × nr MIMO block-fading channel with ns channel states in each precoded matrix. Then, we place nt/s
′ times each

subpart of S(s′, ns, s) in the precoding matrix in order to satisfy Proposition 2 and construct the quasi-optimal linear

precoder S(nt, ns, s) for any set of parameters nt, ns and s. Its coefficients are equal to

∀l2 ∈ [1, nt/s
′], ∀l1 ∈ [1, ss′], ∀t ∈ [1, ns], ∀i ∈ [1, s′], ∀v ∈ [1, s′],

S(l2−1)s′s+l1,v+(l2−1)nt/s′+(i−1)nt+(t−1)s′nt
=

1√
N ′

t

exp
(
2jπ

[
(l1 − 1)

(
1

Φ−1(2N ′
t)

+ v−1+(i−1)s′+(t−1)s′2

N ′
t

)
+ (i− 1)

(
1

Φ−1(2s′) + v−1
s′

)])
and 0 elsewhere.

(54)
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E. Performance of the quasi-optimal precoder with iterative receiver

We have presented quasi-optimal linear precoders providing good coding gain and full diversity ML performance

under ideal interleaving. However, the ML decoder of the global Euclidean code does not exist and we process iterative

joint detection and decoding. Proposition 2 is satisfied by an infinity of matrices, all providing the same ML performance.

Let us consider the performance behavior after the first iteration. As no a priori information is available at the detector,

errors before decoding are numerous and not necessarily transmitted on different precoding time periods. Let us consider

one precoding time period and assume that we observe two erroneous bits. If the bits are transmitted on the same

modulation symbol, the Euclidean distance dk changes but this does not affect the linear precoder optimization.

However, if the two bits are placed onto two different rows of S, the average performance might be modified and

interference inside a block and between blocks should be considered. An optimization of the precoder following the

Tarokh criterion should be done, under the conditions presented in Proposition 2. Simulation results show that the

modified cyclotomic rotation has good uncoded ML performance, close to algebraic full rate space-time block codes.

Thus, we expect good performance at the first iteration of a joint detection and decoding process, which is desirable

to reduce the number of iterations needed to achieve the near ML performance and to provide good performance with

non-iterative receivers. The optimization of the first iteration is not addressed in this paper, but first answers are given

in [31].

VI. Practical interleaver design for convolutional codes

The maximum diversity to be gathered is limited by the channel characteristics, the linear precoding spreading

factor and the minimum Hamming distance of the binary code, all summarized in (31). Let us assume that the linear

precoder spreading factor s is chosen int such a way that diversity order is maximized: Υmax = ncntnr. Thus, there

exists an interleaver that allows ML performance with full diversity. We present a new BICM interleaver design which

satisfies Definition 1 and leads to the concept of full diversity BICM since the system exhibits a predetermined diversity

whatever the parameters of the considered block-fading channel.

We first build an interleaver that enables to achieve maximum diversity on an nt × nr quasi-static MIMO channel

(nc = 1) with BPSK input. Then, we generalize the interleaver construction in order to apply it to higher spectral

efficiency modulations, linear precoding and finally block-fading channels (nc > 1).
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A. Interleaver design for quasi-static MIMO channels with BPSK input

On quasi-static channels, a codeword undergoes only one channel realization. Let us consider an error event in the

code trellis for which w coded bits differ from the transmitted codeword. As all error events are supposed to have a

non-zero probability, the interleaver should be designed for any of them. Let us ensure the equi-distribution property

that LINC successive coded bits, LINC being the length of an error path with LI branches, are transmitted by all nt

transmit antennas in the same proportion. In order to optimize performance, we must also ensure the non-interference

of erroneous bits within the same time period. In the ML sense, two interfering erroneous bits may either degrade

the diversity or the coding gain. When considering the graph representation of our system model in Fig. 1, a time

period corresponds to one channel node. Probabilistic messages on bits should be independent. Practically, bits inside

a channel node should be connected to distant positions in the code trellis. These conditions lead to a design criterion

for quasi-static channels, well known in the algebraic space-time coding theory as the rank criterion [40] and applied

here to the BICM interleaver.

In order to design an interleaver with size LCNC ensuring that consecutive bits are mapped on different symbol

time periods over all transmit antennas, we demultiplex the LCNC coded bits into nt vectors of length LCNC/nt. Each

of these nt sub-frames is separately interleaved and transmitted on a predetermined transmit antenna. However, the

demultiplexing step is not simply processed via the periodic selection of every nt bits. Indeed, some error patterns

of convolutional codes have periodic structure. This may result in non-equally distributed erroneous bits on the nt

transmit antennas and bad coding gain for these error patterns [24]. In order to break periodic structures, we apply

the following demultiplexing

0 ≤ i < nt, 0 ≤ j < LCNC/nt, Vi(j) = V ((i+ j) mod nt + jnt) , (55)

where V is the codeword to be demultiplexed, Vi is the i-th demultiplexed frame. This ensures the uniform distribution

of erroneous bits over nt transmit antennas all along the transmitted frame. Let us now limit the interference of erroneous

bits during the same time period. We assume that only simple error events occur. If the same interleaver is used for

all sub-frames, nt consecutive bits are in the same position of interleaved sub-frames and we can limit the interference

by sliding each sub-frame by one bit position and transmit all frames serially on their associated antennas. Yet, this

does not guarantee that LINC successive bits are transmitted over distinct time periods. In order to satisfy this strong

condition, we use a particular S-random interleaver [16] with a sliding input separation which guarantees that any LI
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successive bits in the interleaved frames are not transmitted during the same block of nt time periods. If we consider

that bit position i is placed at position Πs(i) by the interleaver Πs, we should have

0 ≤ j < LCNC/nt − LI , 0 ≤ i < LI ,

⌊
Πs(j)
nt

⌋
�=
⌊

Πs(j + i)
nt

⌋
. (56)

Each of the nt sub-frames Vi is interleaved into Vi:

0 ≤ i < nt, 0 ≤ j < LCNC/nt, Vi (Πs(j)) = Vi (j) . (57)

Then, a new sub-frame V′
i is built from Vi as follows:

0 ≤ i < nt, 0 ≤ j1 < LCNC/n2
t , 0 ≤ j2 < nt, V′

i ((i+ j2) mod nt + j1nt) = Vi (j2 + j1nt) . (58)

The above construction keeps blocks of nt bits of Vi in positions corresponding to the same nt time periods in V′
i,

but with a cyclic shift of i positions in a block of size nt.

B. Basic interleaver construction

Let us generalize the interleaver construction to design a basic interleaver INI ,SI ,LI for NI channel inputs, a frame size

SI bits and a separation LI . We described Int,LCNC,LI in the previous section. For more general system configurations,

the basic interleaver INI ,SI ,LI will be used in the sequel.

In Fig. 5, we present the basic interleaver for NI = 4 channel inputs. Codeword bits are distinguished by four

different patterns, each pattern corresponding to a specific channel input. In step 1, the codeword is demultiplexed into

NI sub-frames Vi, i = 0, . . . , NI − 1, of length SI/NI each, as presented in the previous section. In step 2, each vector

Vi of size SI/NI is interleaved by the S-random-like interleaver into a vector Vi. In step 3, we build a NI × SI/NI

matrix as the concatenation of SI/N
2
I matrices of size NI ×NI . The latter are circulant matrices where the first row

contains the NI first values of V0, and the second row contains the first NI values of V1. Rows 3 and 4 are built from

V2 and V3 similarly.

Finally, the NI ×SI/NI matrix is transmitted over the space-time channel by distributing its rows on channel inputs

and its columns on time periods.

This interleaving guarantees that (LI − 1)NI + 1 consecutive codeword bits are not transmitted during the same
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time period. The value of LI of the S-random-like interleaver should be chosen as large as possible in order to take

into account long error events. An upper bound for LI can be found based on the interleaver separation as for classical

S-random [16]. The interleaver has a sliding input separation equal to LI and an output block separation equal to

NI within a sub-frame. Hence, drawing a simple two-level tree representation would lead to (2LI − 1) ×NI ≤ SI/NI ,

rewritten as

LI ≤ 1
2

(
SI

N2
I

+ 1
)
. (59)

C. Interleaver design for quasi-static MIMO channels with M -ary input

In section VI-A, we have presented an interleaver for MIMO quasi-static channels and BPSK modulation. For a

modulation with higher spectral efficiency, erroneous bits in an error path should be dispatched on different time

periods and equally transmitted over all transmit antennas and bit positions. Repartition on different bit positions

is required as different bits of a modulation scheme are not equally protected. These conditions are satisfied by the

Imnt,LCNC,LI interleaver.

Increasing the diversity by transmitting erroneous bits on all antennas is more important than increasing the coding

gain by transmitting them on all modulation bits. The nt first sub-frames should be transmitted on the nt transmit

antennas and on the first mapping bit. The second block of nt sub-frames should be transmitted on the second mapping

bit, and so on.

D. Application to linear precoding

When a linear precoder is used to recover a part of the transmit diversity, the new channel matrix SH has snt × snt

rows and columns. Linear precoders have been optimized in section V when at most one erroneous bit is observed on

each precoding time period. We have shown that the precoded channel output is divided into independent blocks. We

modify the order of the rows as follows (s′ = s/ns and N ′
t = s′s)

∀l2 ∈ [1, nt/s
′], ∀l1 ∈ [1, ss′], ∀t ∈ [1, ns], ∀i ∈ [1, s′], ∀v ∈ [1, s′],

S(l1−1)nt/s′+l2,v+(l2−1)nt/s′+(i−1)nt+(t−1)s′nt
=

1√
N ′

t

exp
(
2jπ

[
(l1 − 1)

(
1

Φ−1(2N ′
t)

+ v−1+(i−1)s′+(t−1)s′2

N ′
t

)
+ (i− 1)

(
1

Φ−1(2s′) + v−1
s′

)])
and 0 elsewhere.

(60)

Now, the nt/s
′ consecutive rows of S lead to independent row vectors SlHk that look like a true multiple antenna

channel. In this case, the interleaver Ismnt,LCNC,LI is designed for diversity and gain exploitation. As presented in the
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previous subsection, the snt first rows of the last interleaver matrix will be transmitted on the first mapping bit, and

so on.

E. Interleaver design for block-fading MIMO channels

For block-fading channels, nc different channel realizations occur during the codeword. In order to take advantage

of the transmission and time diversity given by the linear precoding and the nc different realizations of a block-fading

MIMO channel, the interleaver of a BICM should place consecutive bits on different precoding time periods and equally

distribute them among all linear precoding rows and all nc channel realizations.

We extract nc sub-frames from the codeword, each sub-frame will be transmitted on one of the nc blocks and only

experience one channel realization. We interleave each sub-frame with the interleaver optimized for MIMO quasi-static

channel for exploiting the linear precoding diversity.

The demultiplexing into nc sub-frames is done in the same manner as for the channel inputs in step 1 of Fig. 5:

0 ≤ inc < nc, 0 ≤ j < LCNC/(ncnt),Vnc

i (j) = V ((inc + j) mod nc + jnc) . (61)

This demultiplexing/interleaving is sufficient to exploit the time diversity. Indeed, there is no interference between the

symbols experiencing the different channel realizations unlike symbols transmitted on different linear precoding rows

and bit positions.

F. Application to turbo-codes

The BICM precoder and interleaver have been designed to provide full diversity and optimal coding gain for any

pairwise error probability. However, the error rate is given by the probability to leave the Voronoi region. With

convolutional codes, the number of neighbors increases with the frame length whereas the minimum Hamming distance

dHmin remains constant. Thus, the frame error rate increases with frame length. In order to obtain the opposite

behavior, the Euclidean distance must increase with frame length and provide a performance gain higher than the

performance degradation due to the increased number of neighbors. It has been shown in [25][9] that turbo-like codes

can fulfill such a condition over block-fading channels. As proposed in [24], we modify the classical parallel turbo code

with two encoders RSC1 and RSC2 and an interleaver Πt by adding a de-interleaving Π−1
t of coded bits at the output of

RSC2. Thanks to this de-interleaving, error events are localized and the optimized channel interleaver can be applied.
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VII. Simulation results

In this section, we evaluate the performance of actual iterative joint detection and decoding of the ST-BICM. The

APP detector is performed by exhaustive marginalization. The set of 2mNt noiseless received precoded symbols zSH is

computed once per channel block realization since the channel matrix SH is constant during the block. This results in a

complexity reduction for the marginalization, which now requires around LCNC/(msnt)2mNt operations per iteration if

s� LCNC. For large values of mNt, the complexity of the exhaustive search becomes prohibitive. In order to cope with

complexity issues, quasi-optimal or sub-optimal MIMO detectors may also be used, e.g., a SISO list sphere decoder

[28][38][3][7], a SISO-MMSE detector [17][41] or a detector using sequential Monte Carlo method [15].

Let us consider a 2 × 1 quasi-static (nc = 1) MIMO channel and QPSK modulation. We use (7, 5)8 NRNSC or

(3, 2)8 NRNSC codes with rate 1/2 and a blocklength of 1024 coded bits. From the Singleton bound we know that full

diversity can be achieved without linear precoding. We compare in Fig. 6 the performance obtained with a classical

PR interleaver and the performance obtained with the optimized interleaver described in section VI. Full diversity

order is only achieved with the optimized interleaver, for which the performance slope is equal to the one of the outage

probability. The optimized interleaver provides performance improvement without any increase of complexity neither

at the transmitter nor at the receiver. In most cases, the PR interleaver only provides a diversity nr, i.e., it does not

allow for any transmit diversity order recovery. The (7, 5)8 NRNSC code achieves a higher coding gain than the (3, 2)8

NRNSC code. It achieves performance within only 2.5 dB from the outage capacity with Gaussian input and within

1.5 dB from the outage capacity with QPSK input. The performance lower bound corresponding to ideally precoded

BICM is also drawn. It is obtained from the performance of the same coded modulation transmitted on a 1 × ncntnr

SIMO channel, as explained in section V-A. There is a 1 dB gap between ideal and actual performances with the (3, 2)8

NRNSC code and a 0.75 dB gap with the more powerful (7, 5)8 NRNSC code. This confirms the analytical result of

section V-A obtained for ML performance: The higher the Hamming weight is, the closer to the ideal performance

the actual iterative receiver can perform. However, a better code does not always provide better frame error rate.

Indeed, we have seen that, when w ≥ ntnc, the full diversity of the considered pairwise error probability can be

achieved with an ideal interleaver. The remaining w − ntnc BSK distances are uniformly distributed among all the

channel states. A better error-correcting code with greater Hamming weights w′ does not enhance the diversity but the

coding gain per pairwise error probability. However, the degradation induced by the increased number of neighbors may

be higher than the improvement brought by increased coding gains. How to handle this trade-off is left for further study.
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In Fig. 7, we show the performance of a rate-1/2 (7, 5)8 NRNSC code over a 2 × 2 MIMO block-fading channel

with nc = 2 and QPSK input. The frame length is 256 coded bits. With a PR interleaver, a diversity order nr = 2 is

achieved, as transmit diversity is not collected. Even with the optimized interleaver, full diversity is not obtained at

the last iteration. Indeed, the Singleton bound is equal to 6 without linear precoding. Two different linear precoders,

the Golden code and the DNA code, both with s = 2, are used to achieve the full diversity order 8. The slope difference

between diversity orders 6 and 8 is not significant. However, linear precoding provides an additional coding gain which

allows to perform within 2 dB from the outage capacity with Gaussian input using a four-state convolutional code

and a small frame length. The Golden code does not satisfy the equal norm condition, which induces a slight loss in

coding gain. Nevertheless, this loss is fully compensated by the averaging of the dk,l,i into equal γk,l values provided

by the error-correcting code as explained in V-A. For a higher frame length, the performance with convolutional codes

is degraded. Therefore, we will also investigate performance with turbo-codes.

In Fig. 8, we compare two strategies for achieving full diversity with BICM: linear precoding and constellation

expansion [26]. Constellation expansion consists in increasing m while decreasing the coding rate, in order to achieve

the full diversity without precoding and with the same spectral efficiency. A MIMO 2 × 2 channel with nc = 2 is

considered. The frame length is 1024 coded bits. Using QPSK modulation and rate-1/2 coding, full diversity is not

achieved. Using a precoded QPSK with s = 2 and a 16-state rate-1/2 (23, 35)8 NRNSC code having minimal Hamming

distance 7, we get the same spectral efficiency, 2 bits per channel use, and the Singleton bound is equal to 8, the full

diversity order. We compare this full-diversity scheme using linear precoding with a scheme using constellation expansion

from QPSK to 16-QAM with a 64-state rate-1/4 NRCSC code having generator polynomials (135, 135, 147, 163)8 and

minimal Hamming distance 20. With the latter scheme, we get the same spectral efficiency and the Singleton bound is

also equal to 8. The linear precoder provides a greater diversity order at the first iteration. At the last iteration, both

schemes have same diversity and the precoded scheme slightly outperforms the scheme with constellation expansion.

Since the detector complexity is around LCNC/(msnt)2mNt operations per iteration if s� LCNC , the detection of the

precoded system is as complex as the detection of the one with constellation expansion. However, channel decoding

of the 64-state (135, 135, 147, 163)8 NRNSC code is more complex than the decoding of the 16-state (23, 35)8 NRNSC

code. Thus, to get a same performance, it is less complex to use linear precoding than to use constellation expansion.

When choosing a 64-state NRNSC (133, 171)8 code with rate 1/2 and minimal Hamming distance 10, the coding gain
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is increased by almost 1 dB.

In order to increase the frame length without degrading performance, we now consider turbo-codes. Fig. 9 illustrates

the performance of a (7, 5)8 RSC turbo-code over a 1 × 1 channel with nc = 4, 16-QAM input and either a PR or

an optimized interleaver. Two different frame lengths (256 and 2048 coded bits) are tested. With the PR interleaver

and without precoding, the full diversity order 4 is not achieved. If the optimized interleaver is used, the full diversity

order is not achieved neither, but the smaller slope is not visible down to a FER equal to 10−3. A similar behavior is

obtained with PR interleaver and precoding s = 2. Finally, the DNA precoded modulation with optimized interleaver

achieves full diversity performance within less than 2 dB from the outage capacity with Gaussian input.

Fig. 10 illustrates the performance of a (7, 5)8 RSC turbo-code over a 2 × 2 quasi-static channel with QPSK input

and either a PR or an optimized interleaver. Two different frame lengths (256 and 2048 coded bits) are tested. With

the PR interleaver, the full diversity order 4 is not achieved, and the performance degrades when the frame length

increases, as with convolutional codes. With the optimized interleaver, the full diversity order is achieved and the frame

error rate decreases when the frame length increases. The system using DNA precoding (s = 2), optimized interleaver

and a turbo code finally performs within 1 dB from the outage capacity with Gaussian input.

Fig. 11 represents the performance of a (7, 5)8 RSC turbo-code over a 4 × 1 quasi-static channel with BPSK input

and either a PR or an optimized interleaver. Two different frame lengths (256 and 2048 coded bits) are tested. Without

linear precoder and using a PR interleaver, the full diversity gain is not achieved. Asymptotically, the observed diversity

is nr = 1, but, for low Eb/N0, the performance is close to the performance obtained with the optimized interleaver.

Indeed, the turbo-code generates a large amount of errors for low Eb/N0 and the probability of satisfying the ideal

interleaving condition with a PR interleaver is high. However, when Eb/N0 is high, only neighbors have an influence on

the error rate and it is crucial to place the few erroneous bits on all the channel states. This behavior is stressed with

increased frame length. In order to achieve maximum diversity, according to the Singleton bound, a precoding with at

least s = 2 is needed. This is confirmed by the simulation results and again the error rate decreases when the frame

length increases. With the 4× 1 MIMO channel, a large amount of interference exists between the transmit antennas.

Nevertheless, performance is within 2.5 dB from the outage probability with Gaussian input. Performance will be even

closer to the outage probability with a higher number of receive antennas or channel realizations.
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In Fig. 12, performances of NRNSC codes and parallel turbo-codes with RSC constituent codes over a 2 × 1 quasi-

static MIMO channel are drawn versus frame size for Eb/N0 = 15 dB. Performance of the Alamouti scheme [1] having

same spectral efficiency without channel coding is also drawn as a reference. The frame error rate increases with the

frame size when using Alamouti scheme or NRNSC codes whereas it remains constant when using turbo codes. This

strong property may be partly explained by the interleaving gain of the turbo-code but further research is required on

this point.

VIII. Conclusions

In this paper, we have analyzed the ideal behavior of an ST-BICM using full-rate linear precoding on a MIMO

block-fading channel. Ideal performance has been derived analytically using exact pairwise error probabilities under

ideal interleaving conditions. Using a bound on the diversity order, we have shown how to set the time dimension of the

linear precoder. Then, we have presented how to design the linear precoder and the interleaver to obtain an ST-BICM

achieving full-diversity and performing close to the ideal performance and the outage probability. Fig. 13 summarizes

the optimization steps followed in this paper. The proposed DNA precoder slightly outperforms the algebraic Golden

code. Furthermore, the design of DNA precoders holds for any parameter set (nt, s, ns), whereas algebraic codes have to

be specifically designed for each pair (nt, s). We have also shown that, for a same performance, using linear precoding

is less complex than using constellation expansion. Finally, using turbo codes with the optimized interleaver, we have

obtained an FER which does not increase with the frame length.

Appendix

We first consider ns = 1 and extend the result to any value of ns.

A. Precoding matrix experiences one channel realization (ns = 1)

For ns = 1, the quasi-static channel matrix Hk is defined as Hk = diag
(
H[1]

k , . . . ,H[1]
k

)
, H[1]

k being repeated s

times. From Sl, we construct the s× nt matrix S′[1]
l =

(
S[1][1] T

l ,S[1][2] T
l , . . . ,S[1][s] T

l

)T

. The row vector S[1][i]
l of size

nt denotes the i-th sub-part of Sl. The nr columns hi of H[1]
k are independent realizations of an nt × 1 multiple-input

single-output channel. Let us define M[1]
k as an nt × nt Hermitian square root matrix of Σ[1]

k =
∑Nt

l=1 γ
2
k,lS

′[1]∗
l S′[1]

l .

Thus,

M[1]
k = M[1]∗

k = U∗√Φ
Σ

[1]
k

U, (62)



35

where Φ
Σ

[1]
k

= diag(ϑ[1]
k,1, . . . , ϑ

[1]
k,nt

), ϑ[1]
k,u being the u-th real eigenvalue of Σ[1]

k , and U is a unitary matrix. We write

Nt∑
l=1

Rk,l =
nr∑
i=1

Nt∑
l=1

γ2
k,lh

∗
i S

′[1]∗
l S′[1]

l hi = Tr

(
nr∑
i=1

M[1]
k hih∗

i M
[1]∗
k

)
. (63)

The random variable
∑nr

i=1 M[1]
k hih∗

i M
[1]
k has a Wishart distribution with nr degrees of freedom and parameter matrix

Σ[1]
k . The characteristic function of the trace of

∑nr

i=1 M[1]
k hih∗

i M
[1]
k is given in [33]. Finally,

EHk
[ΨLLRk

(jν)] = EHk

[
exp

(
ν(j − ν)

2
Tr(

∑nr

i=1 M[1]
k hih∗

i M
[1]
k )

N0

)]
(64)

=
(

det(Σ[1]
k ) det

(
Σ[1]

k

−1 − ν(j − ν)
2N0

Int

))−nr

(65)

=
nt∏

u=1

(
1 − ν(j − ν)

2N0
ϑ

[1]
k,u

)−nr

. (66)

B. Precoding matrix experiences several channel realizations (ns > 1)

For ns > 1, we first decompose each row Sl into ns sub-parts of size Nt/ns, denoted S[t]
l . Then, each sub-part S[t]

l is

decomposed into s/ns sub-parts S[t][i]
l of size nt. As different values of t correspond to independent channel matrices

H[t]
k , the characteristic functions associated with the sub-parts S[t]

l can be multiplied. Substituting s with s/ns in the

mathematical development presented in section A, we directly have

EHk
[ΨLLRk

(jν)] =
ns∏
t=1

nt∏
u=1

(
1 − ν(j − ν)

2N0
ϑ

[t]
k,u

)−nr

, (67)

where ϑ[t]
k,u is the u-th eigenvalue of

Σ[t]
k =

Nt∑
l=1

γ2
k,l

s/ns∑
i=1

S[t][i]∗
l S[t][i]

l . (68)
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nt�s 1 2 3 4 5 6 7 8
1 1
2 2 2
3 2 3
4 3 4 4
5 3 5
6 4 4 6 6
7 4 7
8 5 6 8 8

TABLE I
Diversity order from modified Singleton bound versus number of transmit antennas nt and spreading factor s, for

RC = 1/2, nr = 1 and nc = 1.

nt�s 1 2 3 4 5 6 7 8
1 2 2
2 3 4 4
3 4 4 6 6
4 5 6 8 8
5 6 6 10
6 7 8 9 12
7 8 8 14
8 9 10 12 16

TABLE II
Diversity order from modified Singleton bound versus number of transmit antennas nt and spreading factor s, for

RC = 1/2, nr = 1, nc = 2.

w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8
nt = 2 0.00 0.26 0.00 0.09 0.00 0.05 0.00
nt = 3 / 0.00 0.25 0.21 0.00 0.08 0.08
nt = 4 / / 0.00 0.22 0.26 0.17 0.00
nt = 5 / / / 0.00 0.19 0.26 0.24
nt = 6 / / / / 0.00 0.17 0.25
nt = 7 / / / / / 0.00 0.15
nt = 8 / / / / / / 0.00

TABLE III
Best gain in dB to be provided by linear precoding with respect to an unprecoded system, with ideal interleaving and for

a given pair of codewords with Hamming distance w and BPSK input.



40

MIMO

Channel

H

Symbol Linear

Precoder

S

Interleaver

Mapping

c
y

snr

noise η

z

b

Ω

Error Correcting Code

C Π
snt

Fig. 1. Bit-interleaved coded modulation transmitter and multiple antenna channel model.

Code

Structure

iter=0

iter>0 Interleaver

SISO
Detector

Computation +
Likelihood

Marginalization

for the error

correcting code

SISO Decoder info. bits

APPs of Decoded

Extrinsics of

coded bit

bits

De−interleaver

H

0.5

y

π(c�)

ξ(c�)

Fig. 2. Iterative APP detection and decoding receiver.

γ2
1

0

0

γ2
2

⇒ Gbf = γ1γ2

Set of time periods T1 Set of time periods T2

Fig. 3. Coding gain for unprecoded 2 × 1 quasi-static MIMO channel



41

0

γ2
2/2

γ2
2/2

0

0

γ2
1/2

γ2
1/2

0

⇒ G2,1 = γ2
1+γ2

2
2

Set of precoding time periods T ′
1 Set of precoding time periods T ′

2

Fig. 4. Coding gain for precoded 2 × 1 quasi-static MIMO channel, s = 2
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Fig. 5. Basic interleaver design for NI = 4 inputs, a frame size SI and a separation LI
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Fig. 6. Optimized interleaver with rate-1/2 NRNSC codes - QPSK modulation, 2 × 1 MIMO channel, nc = 1, 10 iterations, LcNc = 1024.
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Fig. 7. Optimized interleaver with rate-1/2 (7, 5)8 NRNSC code and linear precoders - QPSK, 2 × 2 MIMO channel, nc = 2, 5 iterations,
LcNc = 256 - No linear precoder, DNA cyclotomic precoder (s = 2, ns = 1), Golden code (s = 2, ns = 1).
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Fig. 8. Constellation expansion versus linear precoding - 2 × 2 MIMO channel, nc = 2, LcNc = 1024, optimized interleaver.
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Fig. 9. Optimized interleaver with rate-1/2 RSC (7, 5)8 turbo-code and DNA cyclotomic precoder - 16-QAM, 1×1 MIMO channel, nc = 4,
15 iterations, LcNc = 2048 - Parity check bits of the second constituent are multiplexed via the inverse turbo interleaver.
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Fig. 10. Impact of frame size with a rate-1/2 RSC (7, 5)8 turbo-code - QPSK, 2 × 2 MIMO channel, nc = 1, 15 iterations - Parity check
bits of the second constituent are multiplexed via the inverse turbo interleaver.
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Fig. 11. Impact of frame length with a rate-1/2 RSC (7, 5)8 turbo-code - BPSK, 4× 1 MIMO channel, nc = 1, 15 iterations - Parity check
bits of the second constituent are multiplexed via the inverse turbo interleaver.
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Fig. 12. Frame error rate versus the frame size LcNc - BPSK, 2 × 1 MIMO channel, nc = 1, Eb/N0 = 15 dB - Alamouti STBC, NRNSC
codes, Rate one half punctured parallel turbo codes - Parity check bits of the second constituent are multiplexed via the inverse turbo
interleaver.
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Full diversity ncntnr
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ncnt/s block fading channel

choice of s from ntnc and
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Fig. 13. Summary of the space-time BICM optimization process for a nt ×nr MIMO nc-block fading channel. The parameters s and ns are
the time dimension of the snt × snt precoding matrix S and the number of independent block channel realizations linked by the precoder
respectively.


