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Abstract—This paper presents a polar code design for block
fading channels when no channel state information is available
at the transmitter, which involves that the frozen bits cannot
be changed dynamically with the fading realizations. An outer
parallel code is concatenated with an inner polarization kernel
that changes the properties of the block fading channel. The
rate-splitting between the parallel outer codes is optimized for
minimizing the system’s outage probability. We show that when
polar codes are used as component outer parallel codes, the
overall coding structure is a polar code whose frozen bits are
designed according to the rate-splitting optimization. It is shown
that this scheme achieves quasi-optimal performance at high
throughput with ARQ mechanisms.

I. INTRODUCTION

The block fading channel is a simple and relevant model for
designing error correcting codes for wireless channels with
no Channel State Information at the Transmitter (CSIT). It
allows characterizing the diversity order that can be exploited
by the error correcting code according to its coding rate
[1]. When considering the widely used bit interleaved coded
modulations [2], the equivalent channel seen between the
output of the error correcting code and the input of its decoder
falls back to a block fading channel with binary input in a
large variety of cases including QAM modulations, multiple
antenna [3], or orthogonal frequency division multiplexing.
The design of error correcting codes on block fading channels
have already been widely investigated and mainly relies on
the multiplexing of the coded bits on the independent fading
blocks [4]. However, the proposed schemes are neither flexible
in terms of rate or code size, nor proven to achieve close to
the outage probability performance.

The polar codes [5] have been introduced as the first coding
schemes asymptotically reaching the capacity of a Binary Dis-
crete Memoryless Channel (BDMC). Several studies consider
the optimization of polar codes for (block-) fading channels
[6], high rate modulations and MIMO channels (see, e.g., in
[7]), but require the knowledge of CSIT. Indeed, for a BDMC
with fixed parameter (e.g., the Signal to Noise Ratio (SNR)
of an Additive White Gaussian Noise (AWGN) channel), a
polar code is designed by the choice of its frozen bits. This
choice is usually based on a sorting of the mutual information
between the input of the polar codes and the channel output,
which changes with the BDMC parameter and requires CSIT.

In [8], the authors propose a hierarchical coding scheme
designed for fading binary symmetric channels that does not
require CSIT. However, this coding structure is unsuitable
when the number of fading blocks of the channel is small

or when a large number of quantization levels is required
in order to accurately represent the fading random variables.
In this paper, we specifically address the Rayleigh block
fading channels with a low number of blocks by performing a
statistical optimization of the transmission scheme and frozen
bits selection.

Firstly, in Section II, the block fading channel and the
utility functions for long-term link adaptation are presented.
Secondly, Section III introduces the parallel coding strategy
for the polarized block fading channel. Then, Section IV
focuses on the N = 2 block fading channel case with a
size-2 polarization kernel. The optimization problem for the
rate-splitting is described and an approximation that eases
its computation is derived. Finally, the application of polar
codes as constituent parallel codes is discussed in Section V,
simulation results are shown in Section VI and a conclusion
is given in Section VII.

II. SYSTEM MODEL

Let I(Xi;Yi) be the mutual information between the binary
input Xi and output Yi of a BDMC. It can be expressed as the
mathematical expectation of a function of the Log-Likelihood
Ratio (LLR) Li of the correct versus incorrect decisions on
the binary symbol Xi, such that

I(Xi;Yi) = 1− E
[
log2(1 + e−Li)

]
. (1)

Let us consider the transmission of a coded information
message over a block fading channel with N transmission
blocks comprising the same number of transmission resource
elements. The i-th block is experiencing a quasi-static random
fading channel coefficient αi, which is constant within the
block and changes independently from one information mes-
sage transmission to another. The transmission of each part
of the coded information message is performed via a BPSK
modulation and suffers from an AWGN at the receiver, defin-
ing a long-term SNR γ = Es/2N0. Thus, the instantaneous
SNR ρi = γ|αi|2 for the i-th block is a random variable. It
can be estimated at the receiver, which involves that the LLR
of the correct versus incorrect decisions from the observation
Yi on an AWGN channel with BPSK input and SNR ρi is
Li = 4ρiYi ∼ N (4ρi, 8ρi). The mutual information associated
to the i-th transmission block is a non decreasing function I(.)
of ρi, denoted I(ρi) = I(Xi;Yi).
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Fig. 1. Block fading channel with an inner polarization kernel.

We consider that the instantaneous SNRs ρi are unknown at
the transmitter, and the relevant information theoretic metric
for the channel is the outage probability defined by

Pout(R, γ) = P

(∑
i

I(ρi) < NR

)
, (2)

where R is the average transmission rate. We assume that the
transmitter only knows the joint probability density function
pγ(ρ1, . . . , ρN ), parametrized by the long term SNR γ. The
transmission strategy can be determined by optimizing the
outage probability Pout(R, γ) for broadcast services or the
throughput R(1− Pout(R, γ)) for Automatic Repeat reQuest
(ARQ) retransmission schemes.

Fig. 1 shows the channel model including a Rate-1 in-
ner polarization kernel that combines the independent inputs
[Z1, . . . , ZN ] into [X1, . . . , XN ]. The conditional mutual in-
formation Ji(ρ) = I(Zi;Y|Zi−1

1 ), where Y = [Y1, . . . , YN ]
and Zi−1

1 = [Z1, . . . , Zi−1], is a function Ji(.) of the
instantaneous SNRs set ρ = [ρ1, . . . , ρN ]. The purpose of
our study is to evaluate the impact of the inner polarization
kernel on the statistical robustness to random fluctuations of
the instantaneous SNR. Thus, we propose the definition:

Definition 1. A quasi-static BDMC is defined by a BDMC with
a mutual information J (ρ), where ρ is a set of parameters
randomly changing from one information message transmis-
sion to another.

For example, the SNR is the parameter of the AWGN
BDMC, and applying a quasi-static fading defines its quasi-
static counterpart.

The channel model defined by the use of an inner po-
larization kernel over a block fading channel results in
a set {J1(ρ), ...,JN (ρ)} of equivalent parallel quasi-static
BDMCs. These parallel BDMCs do not necessarily have
identically distributed and independent parameters and the
equivalent BDMCs are not necessarily AWGN channels even
when the ones of the initial block fading channel are. The
inner polarization kernel correlates and changes the fading
distribution and the nature of the BDMCs. The properties of
the new parallel channel model and the optimization of the
transmission scheme for this model will be discussed in the
next sections.
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Fig. 2. Outer parallel coding with rate-splitting and inner polarization kernel.

III. OUTER PARALLEL CODING STRATEGY

The capacity conservation of parallel BDMC channels en-
coded by a polarization Kernel is one of the main result
of channel polarization [5]. It is achievable under a proper
design of the Kernel and under successive decoding. This
involves that

∑
i Ji(ρ) =

∑
i I(ρi) and consequently that the

outage probability remains unchanged under the effect of a
polarization kernel:

Pout(R, γ) = P

(∑
i

Ji(ρ) < NR

)
. (3)

The outage probability is upper bounded by Pout(R, γ) ≤
Pub(r, γ) for all r = [r1, . . . , rN ] such that

∑
i ri = NR, and

Pub(r, γ) = P

(⋃
i

(Ji(ρ) < ri)

)
. (4)

This upper bound independently considers the outage events
Ji(ρ) < ri of the equivalent N parallel BDMCs resulting
from the inner polarization kernel. Also, the average rate
R is split into sub-rates ri/N . Thus, the upper bound is
associated with a coding strategy comprising an outer parallel
coding stage concatenated with an inner polarization kernel,
as illustrated in Fig. 2, where the associated (conditional)
mutual information values are shown on the parallel links. This
coding strategy is equivalent to the diagonal multiplexing of
[6]. The performance degradation induced by the outer parallel
coding approach are linked to the events when (

∑
i Ji(ρ) ≥

NR)
⋂

(
⋃
i (Ji(ρ) < ri)). As a remark, a theoretical way

to reach optimality without CSIT is the broadcast approach
with superposition coding involving an infinite (or sufficiently
large) number of levels [9]. This approach is also optimal
without any polarization of the block fading channel, but
does not meet the practical requirements towards a good
performance/complexity trade-off. We will first prove the
achievability of Pub(r, γ) in Proposition 1, and the interest
of using an inner polarization kernel in Proposition 2.

Definition 2. The set C(r,J (ρ)) contains the error correcting
codes with rate r achieving the outage probability of a quasi-
static BDMC with associated mutual information J (ρ).

In other words, when a code belongs to C(r,J (ρ)), it is
error-free when J (ρ) ≥ r.



Proposition 1. In an outer parallel coding and inner polar-
ization kernel concatenation, if each i-th outer parallel code
is outage achieving, i.e., belongs to C(ri,Ji(ρ)), the outage
probability Pub(r, γ) is achievable.

Proof. Let ρ be such that ∀i,Ji(ρ) ≥ ri. Each conditional
mutual information Ji(ρ) = I(Zi;Y|Zi−1

1 ) is obtained by
the polarization kernel effect under the condition of correct
decoding of Zi−1

1 , i.e., of the parallel codes 1 to i − 1. By
induction, if the codes 1 to i−1 have been correctly decoded,
the i-th code observes a BDMC of capacity Ji(ρ) ≥ ri which
involves a correct decoding (otherwise, the code does not
belong to C(ri,Ji(ρ))). Thus, the intersection of the events⋂
i(Ji(ρ) ≥ ri) leads to no error, taking the complement gives

the proof.

Proposition 2. An inner polarization kernel with associated
set {Ji(ρ)} of non-decreasing component-wise conditional
mutual information functions decreases the outage probability
of the parallel coding scheme on a block fading channel.

Proof. The proof is given by showing that the non-outage
events of the parallel coding scheme sent directly on the
block fading channel with any rate-split (r′1, . . . , r

′
N ) are

also non-outage events when the inner polarization Kernel is
used with a rate-split r = (J1(ρ′), . . . ,JN (ρ′)) such that
ρ′ = (I−1(r′1), . . . , I−1(r′N )). First, the capacity conserva-
tion property of the polarization kernel involves that both
schemes have the same rate

∑
i Ji(ρ′) =

∑
i r
′
i. Let ρ be

a random fading realization leading to a non-outage event for
the parallel coding scheme on the block fading channel with
no inner polarization kernel, i.e., ∀j, I(ρj) ≥ r′j . For all i, the
conditional mutual information Ji(ρ) being non-decreasing
component-wise, and the function I being non-decreasing, we
get ∀j, ρj ≥ I−1(r′j) ⇒ Ji(ρ) ≥ Ji(ρ′), which leads to a
non-outage event with the inner polarization Kernel.

Thus, by assuming that the component codes of the outer
parallel code are outage-achieving, the inner polarization ker-
nel can only improve the performance, which depends on the
functions Ji(.), the rate-split r, and the joint probability den-
sity function pγ(ρ1, . . . , ρN ) of the instantaneous SNRs. In the
next section, we address the optimization of the performance
Pub(r, γ) for a N = 2 Rayleigh block fading channel with the
Arikan’s polarization kernel.

IV. OPTIMIZATION FOR N = 2 BLOCKS

We focus now on the case of the block fading channel with
2 blocks, which gives all the insights for a generalization to a
larger number of fading blocks and polarization kernel sizes
that will be given in an extended version of this paper.

A. Outage boundaries of the polarized block fading channel

Let us consider the N = 2 block fading channel. In Fig. 3,
the outage boundaries defined by the set of points (ρ1, ρ2)
such that I(ρ1) + I(ρ2) = 2R, are drawn for several values
of R. The points bellow these boundaries are associated to
outage events, the probability of outage being the integral of
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Fig. 3. Outage limit of the N = 2 block fading channel, as a function of the
average rate R shown on the limit curves.
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Fig. 4. Conditional mutual information for a polarization kernel of size 2.

the joint distribution of (ρ1, ρ2) on the outage region Ωout,
where

Ωout(R) = {(ρ1, ρ2) ∈ R2|I(ρ1) + I(ρ2) < 2R} (5)

and
Pout(R, γ) =

∮
Ωout(R)

pγ(ρ1, ρ2)dρ1dρ2. (6)

As already mentioned in [6], the outage region Ωout(R) is
independent of the joint distribution of (ρ1, ρ2). The shapes
of the outage boundaries illustrate the results obtained from
the Singleton bound on block fading channels ([1] for error
correcting codes, and [10] for the BPSK input mutual informa-
tion) that the full diversity order is only observed for R ≤ 0.5.
The upper bound Pub(r, γ) can be optimized, for a given long
term SNR γ and joint probability density function p(ρ1, ρ2),
as

(r̂1, r̂2) = arg min
r1,r2|r1+r2=2R

∮
Ω1(r1)

⋃
Ω2(r2)

pγ(ρ1, ρ2)dρ1dρ2

(7)
where Ωi(ri) = {ρ ∈ R2|Ji(ρ) < ri}. Since the rate-split
(r̂1, r̂2) is determined semi-statically, i.e., for each long-term
SNR value γ, it can be computed offline and stored for future
use in the long-term link adaptation process.

Let us now consider the effect of the Arikan’s polarization
kernel of size 2 illustrated in Fig. 4. As stated in [6], for a
given realization of the SNRs (ρ1, ρ2), the conditional mutual
information functions are given by J1(ρ) = P(ρ1, ρ2) and
J2(ρ) = R(ρ1, ρ2). The function

R(ρ1, ρ2) = I(ρ1 + ρ2) (8)
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is obtained when the input Z1 of the first channel branch is
known. Indeed, the LLR of Z2 is obtained from a repetition
check operation L1 + L2, where L1 and L2 are the LLRs
associated to Y1 and Y2, respectively. Thus, the equivalent
channel is an AWGN channel with instantaneous SNR ρ1 +ρ2

and inherent diversity order 2. The function

P(ρ1, ρ2) = I(ρ1) + I(ρ2)− I(ρ1 + ρ2) (9)

is obtained when the input Z2 of the second channel branch
is unknown. Indeed, the LLR of Z1 is obtained from a par-
ity check operation 2 tanh−1(tanh(L1/2) tanh(L2/2)). Thus,
the equivalent channel is not AWGN.

The conditional mutual informations J1(ρ) = P(ρ1, ρ2)
and J2(ρ) = R(ρ1, ρ2) are nondecreasing component-wise
functions which, thanks to Proposition 2, guarantees no outage
probability degradation by the effect of Arikan’s polarization
kernel.

Fig. 5 illustrates the outage limits of the outage regions
Ωi(ri) associated to the i-th parallel coding branch of the
polarized block fading channel. The average rate is set to
R = 0.5, and two rate-split are shown: [r1, r2] = [0.14, 0.86]
and [r1, r2] = [0.26, 0.74]. We can observe how the rate-
split changes the domain of integration of the joint proba-
bility density function p(ρ1, ρ2), defined as the union of the
regions bellow the outage limits of J1(ρ) and J2(ρ). The
optimization problem (7) can be solved numerically by varying
r1 ∈ [0,min(1, 2R)], r2 = min(1, 2R) − r1, and performing
a numerical integration or a Monte-Carlo simulation.

B. Approximation of the rate-split for a Rayleigh fading

The outage regions Ω1(r1) and Ω2(r2) are defined in the
SNR domain as

Ω1(r1) = {ρ ∈ R2|P(ρ1, ρ2) < r1} (10)
Ω2(r2) = {ρ ∈ R2|R(ρ1, ρ2) < r2} (11)

Let us define the region Ω′(ρ′1, ρ
′
2) = {ρ ∈ R2|ρ1 + ρ2 <

ρ′1 + ρ′2} ∪ {ρ ∈ R2|min(ρ1, ρ2) < min(ρ′1, ρ
′
2)}, such that

r1 = P(ρ′1, ρ
′
2), r2 = R(ρ′1, ρ

′
2), and r1 + r2 = 2R. By using

the nondecreasing component-wise properties of P(ρ1, ρ2) and
R(ρ1, ρ2), one can show that Ω1(r1) ∪ Ω2(r2) ⊂ Ω′(ρ′1, ρ

′
2),

whcih will allow to define an upper bound of Pub(r, γ).
When independent Rayleigh fading is considered, the inte-
gration of the joint probability density function pγ(ρ1, ρ2) =
1
γ2 e
−ρ1/γe−ρ2/γ on the region Ω′(ρ′1, ρ

′
2) leads to

Pub(r, γ) ≤ 1−
(

1 +
|ρ′1 − ρ′2|

γ

)
e−

ρ′1+ρ′2
γ . (12)

The minimum of this upper bound can be obtained nu-
merically for all set of candidate tuples (ρ′1, ρ

′
2) such that

P(ρ′1, ρ
′
2) + R(ρ′1, ρ

′
2) = I(ρ′1) + I(ρ′2) = 2R. This set is

obtained by a variation of I(ρ′1) between 0 and min(1, 2R),
a computation of ρ′1 from a tabulated function I−1(.), and
ρ′2 = I−1(min(1, 2R) − I(ρ′1)). The best tuple (ρ̂′1, ρ̂

′
2)

provides an estimate of (r̂1 = P(ρ̂′1, ρ̂
′
2), r̂2 = R(ρ̂′1, ρ̂

′
2)) with

low computational complexity. Fig. 6 shows, as a function of
the SNR, the optimized choice of rate-split (r̂1, r̂2) obtained
with a Monte-Carlo simulation, and the rate-split obtained
by the approximation (12), which results in a tight lower-
estimation of r̂1.
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V. POLAR CODES AS OUTER CODES

In Proposition 1, we have shown that an optimized outage
rate is achievable if each i-th component of the outer parallel
code, shown in Fig. 2, is outage achieving for the equivalent
BDMC with a quasi-static conditional mutual information
Ji(.). It is now of interest to find a family of codes reaching
this property.

Proposition 3. If a polar code of rate r is capacity achieving
on a BDMC with a LLR being non-decreasing with the channel
parameter, it is outage achieving on the counterpart quasi-
static BDMC. (Proof to be provided in the extended paper).

The LLR associated to the observation Y ′j of a BPSK input
AWGN channel with SNR ρ′ is given by 4ρ′Y ′j , and is non-
decreasing in ρ′. Thus, according to Proposition 3, polar codes
achieve the outage probability of quasi-static fading AWGN



channels, whatever the probability density function of the
fading.

Finally, when using polar codes as constituent outer parallel
codes, the global code presented in Fig. 2 is itself a polar
code. Thus, the decoder can jointly decode the global code
with low complexity by using a serial cancellation or a belief
propagation approach which asymptotically outperforms the
achievable bound (4). In this case, the originality of our work
lies in the fact that the frozen bits are not selected for the global
code, but by an optimization of the sub-codes according to the
rate-split design presented in this paper.

VI. SIMULATION RESULTS

The outage probabilities for an average rate R = 0.49
of the N = 2-block Rayleigh fading (BF) and the two
repetitions Maximum Ratio Combining (MRC) channels are
shown in Fig. 7, along with the upper bound performance
(4) when the rate-split is taken according to Fig. 6. We first
observe that the approximated rate-split does not lead to strong
performance degradation. We observe that the upper bound
of the performance is very close to the outage probability of
the block fading channel for frame error rate above 10−1,
while the bound is loose for high SNR. Thus, the proposed
scheme is expected to achieve good performance for systems
working at frame error rates around 10−1, such as with ARQ
or HARQ retransmission schemes. Fig. 8 shows the result
of the optimization of an ARQ-based transmission scheme
without CSIT. For each SNR, the rate R is selected in
order to maximize R(1 − Pout(R, γ)) for the outage-based
performance, or R(1 − Pub(r, γ)) for the proposed scheme,
where r is the best rate-split minimizing Pub(r, γ) for a given
SNR γ. We observe that, by using Arikan’s kernel of size
2 as an inner code, polar codes can beat the throughput of
the MRC-based repetition coding scheme and the parallel
encoding scheme, and perform very close to the optimal for
high throughput.
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VII. CONCLUSION

In this paper, we have proposed a statistical optimization
of polar codes for block fading channels without CSIT. The
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Fig. 8. Throughput of an ARQ scheme over a N = 2 block fading channel
with parallel coding and concatenation to an outer polarization kernel.

polar codes are decomposed as the concatenation of an inner
code defined by a Polarization Kernel and a set of outer
parallel codes. The inner code allows to change the nature
of the block fading channel into quasi-static parallel BDMCs
which parameters are non-identically distributed and non-
independent. The independent decoding of the parallel outer
codes leads to a performance degradation. It can be limited by
a statistical rate-splitting optimization which involves that the
global polar code frozen bits are designed to be statistically
robust to the block fading channel without CSIT. This scheme
shows promising results for high throughput under ARQ. The
future work will present the extension to a higher number of
fading blocks.
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