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Coding for the Non-Orthogonal
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Abstract— In this work, we consider the problem of coding
for the half-duplex non-orthogonal amplify-and-forward (NAF)
cooperative channel where the transmitter to relay and the
inter-relay links are highly reliable. We derive bounds on the
diversity order of the NAF protocol that are achieved by a
distributed space-time bit-interleaved coded modulation (D-ST-
BICM) scheme under iterative APP detection and decoding.
These bounds lead to the design of space-time precoders that
ensure maximum diversity order and high coding gains. The
word error rate performance of D-ST-BICM are also compared
to outage probability limits.

I. INTRODUCTION

Signals transmitted over wireless channels undergo severe
degradations due to effects such as path loss, shadowing,
fading, and interference from other transmitters, in addition
to thermal noise at the receiver. One major way to combat
static fading is to provide diversity in either time, frequency,
or space [1]. For this purpose, multiple-antenna systems that
provide high orders of spatial diversity and high capacity
have been extensively studied [2]. However, due to limited
terminal sizes, the implementation of two or more antennas
may be impossible. Based on the seminal works in [3] and
[4], the authors in [5][6] set up a framework for cooperative
communications, where multiple terminals use the resources
of each other to form a virtual antenna array. Following these
works, many researchers have proposed distributed communi-
cation schemes and analyzed their outage probability behavior
such as in [7][8][9][10][11]. The main protocols that have
been proposed are the amplify-and-forward, where the relay
only amplifies the signal received from the source, before
transmitting it to the destination, and the decode-and-forward,
where the relay decodes the received signal before transmitting
it to the destination. In this paper, we study the performance of
distributed space-time bit-interleaved coded modulations (D-
ST-BICM) schemes for non-orthogonal amplify-and-forward
protocols. Furthermore, we focus on situations where the
transmitter to relay and inter-relay links quality is highly better
than the transmitter to receiver link quality. This situation
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occurs for example when deploying professional relays on top
of buildings in a way to improve the link reliability in low
coverage zones of a multi-cellular system.

The paper is organized as follows: Section II defines the
Matryoshka block-fading channel, a channel that characterizes
the cooperative protocol considered in this paper. In Section
III, we describe the system model and all the parameters
involved in our study. We then derive bounds on the diversity
of D-ST-BICM for the minimum cooperation frame length in
Section IV, and Section V extends these results for any length.
Section VI shows simulation results for different network
topologies, while Section VII gives the concluding remarks.

II. MATRYOSHKA BLOCK-FADING CHANNELS

In this paper, we consider the block-fading channel model in
which a D-ST-BICM codeword undergoes a limited number of
fading channel realizations, namely one fading coefficient per
spatial path. For the sake of analysis, we define a block-fading
channel model where the set of random variables of a higher
diversity block always includes the set of random variables of
a lower diversity block, in a way similar to nested Matryoshka
dolls. This model was first introduced in [12].

Definition 1: Let us consider λ independent fading random
variables (h1, ..., hλ) providing a total diversity order of λ.
LetM(D,L) be a channel built from the concatenation of |D|
blocks, where D = {Di}i and L = {Li}i are respectively the
sets of diversity orders and lengths of each block. As usual,
the integer |χ| denotes the cardinality of the set χ. The i-
th block has a diversity order equal to Di and its fading set
is S(i) with |S(i)| = Di, Di ≤ λ fading random variables,
such that S(i) ⊂ S(i − 1). Thus, we have ∀i > j,Di ≤
Dj and S(1) = {h1, h2, . . . , hλ} or equivalently D1 = λ is
the maximum diversity order. This channel defined by nested
fading sets is referred to as a Matryoshka channel and it is
illustrated in Fig. 1.
Let us now transmit a BPSK-modulated and interleaved code-
word of a rate-Rc code over the M(D,L) channel. First, let
us focus on the pairwise error probability (PEP) of two given
binary codewords c and c′. Due to the channel model, the
diversity order of this PEP is equal to the diversity order of
the lowest index block observing a non-zero part of c − c′.
The performance of the coded modulation has a diversity order
upper-bounded by δmax defined as follows:

Proposition 1: The diversity observed after decoding a rate-
Rc linear code transmitted over a M(D,L) channel is upper-
bounded by δmax = Di where i is given by the following
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D1 D2 D(|D|)
S(1) = {α1, · · · , αλ} S(2) ⊂ S(1) · · · · · · · · · · · · S(|D|) ⊂ S(|D| − 1)
← L1 bits → ←L2 bits → ← L(|D|) bits →

Fig. 1. Definition of a Matryoshka block-fading channel with |D| nested fading sets.

inequalities:
i−1∑
k=1

Lk < Rc

|D|∑
k=1

Lk ≤
i∑

k=1

Lk (1)

and δmax is achievable for any systematic linear code.

Proof: This proof is inspired from the Singleton bound’s one.
The code C has length N and dimension K, where N =∑|D|
k=1 Lk and K = RcN . If K >

∑i−1
k=1 Lk, whatever the

code is, a puncturing of the last
∑|D|
k=i Lk bits leads to a zero

minimum Hamming distance because
∑|D|
k=i Lk > N − K.

This means that there always exists two codewords c and c′

such that the last
∑|D|
k=i Lk bits of c−c′ are null, and involves

that δmax ≤ Di.
Let us now suppose that the code is linear and systematic.

If the information bits are transmitted on the blocks of highest
diversity order and if K ≤

∑i
k=1 Lk, the Hamming distance

after puncturing the last
∑|D|
k=i+1 Lk bits remains strictly

positive and induces that δmax ≥ Di.�
It is straightforward to show that the bound on the diversity
order applies to any discrete modulation.

As a remark, in order to achieve the upper-bound on the
diversity of a block-fading channel, non-zero bits of word c−c′
should be placed in as many independent blocks as given by
the Singleton bound. For Matryoshka channels, the bound is
achieved as soon as one non-zero bit of any word c − c′ is
placed in a block of diversity higher than δmax.

III. SYSTEM MODEL AND PARAMETERS

We consider the cooperative amplify-and-forward fading
channel, where terminals have a single antenna. We impose the
half-duplex constraint, in which terminals cannot transmit and
receive signals simultaneously. We consider the TDMA-based
Protocol I from [10] that is also known as the non-orthogonal
amplify-and-forward (NAF) protocol. For cases with more
than one relay, we consider the M -slot β-relay sequential
slotted amplify-and-forward (SSAF) cooperative protocol [13],
where inter-relay communication is allowed as illustrated in
Fig. 2. The source transmits in all time slots, and starting
from the second slot, only one relay scales and transmits the
message received in the previous time slot. The reason we use
this protocol is that it outperforms the classical β-relay NAF
protocol in terms of outage probability [14]. This protocol
gives the following signal model:

ydi =
√
Eihsdxi +

√
1− Eiĥri−1dγi−1yri−1 + wdi (2)

yri =
√
Eiĥsrixi +

√
1− Eiĥri−1riγi−1yri−1 + wri (3)

with i = 1, ...,M . We have that yr0 , hr0d, and γ0 are null.
Subscripts s , d , and ri correspond to source, destination , and

Fig. 2. Slotted amplify-and-forward protocol channel model

i-th effective relay [13]. The unit variance complex symbol
xi is transmitted in the i-th slot, the received signal at the
destination in the i-th time slot is ydi , while yri is the
signal received by the i-th effective relay. The coefficients Ei
represent the energy transmitted by the source in the i-th slot.
The ĥuv are the complex Gaussian fading coefficients given
by:

ĥsri = hsrj , j = [(i− 1) mod (β)] + 1

ĥrid = hrjd, j = [(i− 1) mod (β)] + 1

ĥrirk = hrjr` , j = [(i− 1) mod (β)] + 1,
` = [(k − 1) mod (β)] + 1

The huv coefficients are the fading coefficients between de-
vices u and v. The wdi and wri are additive white Gaussian
noise (AWGN) components. The γi are the energy normaliza-
tion coefficients at the i-th relay, subject to E|γiyri |2 ≤ 1, and
γ0 = 0. In matrix form, the channel model becomes:

yd = xH + wc = zSH + wc (4)

where yd is the length-M vector of received signals and z
is the length-M vector of 2m-QAM symbols. S is a M ×M
precoding matrix, and H is upper-triangular as shown in (5).
Finally, the vector wc is a length-M colored Gaussian noise
vector as given by (6). We set:

Γ = E
[
wc
†wc

]
= 2N0Θ (7)

Where the † operator denotes transpose conjugate. By per-
forming a Cholesky decomposition on Θ, we get:

Θ = Ψ†Ψ (8)

Thus the equivalent channel model becomes:

ydΨ−1 = zSHΨ−1 + w (9)

where w is a white Gaussian noise vector.
Digital transmission is made as follows: Uniformly distributed
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H =



√
E1hsd

√
E1(1− E2)γ1ĥsr1 ĥr1d

√
E1(1− E2)(1− E3)γ1γ2ĥsr1 ĥr1r2 ĥr2d · · ·

0
√
E2hsd

√
E2(1− E3)γ2ĥsr2 ĥr2d · · ·

0 0
√
E3hsd · · ·

...
...

...
. . .


(4)

wc =
[
w1 w2 w3 · · ·

]
(5)

with:

w1 = wd,1

w2 =
√

(1− E2)γ1ĥr1dwr,1 + wd,2

w3 =
√

(1− E2)(1− E3)γ1γ2ĥr1r2 ĥr2dwr,1 +
√

(1− E3)γ2ĥr2dwr,2 + wd,3

information bits are fed to a binary convolutional encoder.
Coded bits {ci} are then interleaved and Gray mapped into
QAM symbols. The QAM symbols are then rotated via S
and transmitted on the SSAF channel defined by H given
in (4). The coherent detector at the destination computes an
extrinsic information ξ(ci) based on the knowledge of H,
the received vector yd, and independent a priori information
π(cj) for all coded bits. The channel decoder then computes
a posteriori probabilities (APP) based on the de-interleaved
extrinsic information coming from the detector using the
forward-backward algorithm [15]. The transmitted information
rate is equal to R = Rcm bits per channel use, where the
cardinality of the QAM constellation is 2m.

As a remark, one precoded symbol at the output
of S is transmitted over a row of the channel ma-
trix H and thus experiences a set of random variables
{hsd, hsrihrid, . . . , hsrihriri+1 · · ·hrβd}. If we assume that
the quality of the source to relays and inter-relays links is much
better than the source to destination or relay to destination
links, we can then focus on the hsd or hrid random variables
to understand the diversity behavior of such a system. Indeed,
in the context of professional relay deployment on top of
buildings, we may assume that the relays are placed and have
their antennas tuned to ensure a good link quality with the
base station. Furthermore, in the case of detect-and-forward or
decode-and-forward protocols, this assumption is still relevant.
Finally, one precoded symbol transmitted on the i-th row of
the channel matrix sees a set of β + 2 − i fading variables
included in the set seen by a symbol sent on the i− 1-th row.
Hence, we will see in the sequel that the equivalent channels
obtained by the use of a sequential slotted amplify and forward
protocol fall into the class of Matryoshka channels.

IV. THE DIVERSITY OF D-ST-BICM OVER β + 1-SLOT
SSAF CHANNELS

The maximum diversity inherent to the SSAF channel is
dmax = β+ 1, and it can be collected by an APP detector (at
the destination) if a full-diversity linear precoder is used at the
transmitter. The precoder mixes the β+1 constellation symbols
being transmitted on the channel providing full diversity with

uncoded systems and without increasing the complexity at the
detector. Using precoders that process spreading among more
than β + 1 time slots can further improve the performance.
From an algebraic point of view, a linear precoder of size
(β + 1)2 × (β + 1)2 is the optimal configuration to achieve
good coding gains (without channel coding) [11] at the price
of an increase in detection complexity (the complexity of an
exhaustive APP detector grows exponentially with the number
of dimensions).

On the other hand, for coded modulations transmitted on
block-fading channels, the channel decoder is capable of
collecting a certain amount of diversity that is however limited
by the Singleton bound [16]. In [17][19][18], the modified
Singleton bound taking into account the rotation size over
a MIMO block-fading channel is used to achieve the best
tradeoff between complexity and diversity. For this purpose,
we derive hereafter an upper-bound on the diversity order of a
coded transmission over a precoded β+1-slot SSAF channel,
and then deduce the precoding strategy to follow in order to
achieve full diversity.

A. Precoded β + 1-slot SSAF channel models and associated
bounds

1) Non-precoded β + 1-slot SSAF channels with equal
per-slot spectral efficiency: We will first assume that the
interleaver of the BICM is ideal, which means that for any
pair of codewords (c, c′), the ω non-zero bits of c − c′ are
transmitted in different blocks of β + 1 time periods, which
means that no inter-slot inter-bit interference is experienced.
The interleaving, modulation and transmission through the
channel convert the codewords c and c′ onto points C and C′
in a Euclidean space. For a fixed channel, the performance is
directly linked to the Euclidean squared distance |C−C′|2, that
can be rewritten as a sum of ω squared Euclidean distances
associated to the ω non-zero bits of c − c′. For each of the
ω squared Euclidean distances, we can build an equivalent
channel model which corresponds to the transmission of a
BPSK modulation over one row of the channel matrix H.
Thus, several squared Euclidean distances appear to be trans-
mitted on the same equivalent channel and the squared distance
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|C − C′|2 can be factorized as follows: |C − C′|2 =
∑β+1
i=1 d

2
i

where d2
i is linearly dependent on the norm of the k-th row

of H.
In other words, at the output of the APP detector, an equiv-

alent block-fading channel is observed and the constituent
blocks do not have the same intrinsic diversity order: A soft
output belonging to the j-th block carries the attenuation
coefficients {hsd;hrjd; . . . ;hrβd}. As a remark, blocks are
sorted such that the j-th block carries a diversity order of
β + 2 − j and the subset of realizations of random variables
observed in the i-th row of H is included in the subset of
random variables observed in the i − 1-th row of H. As the
same modulation is used on each time slot of the relaying
protocol, each block length is equal to N/(β + 1).

Finally, the equivalent β+1-slot SSAF channel at the output
of the APP detector is a Matryoshka M([β + 1, β, . . . , 1] ,
[N/(β+1), . . . , N/(β+1)]) channel, where N is the number
of coded bits per codeword. With this observation, we can
conclude that the upper-bound on the diversity order of a non-
precoded SSAF channel is

δmax,1(β,Rc) = 1 + b(1−Rc) (β + 1)c (10)

which is equal to the classical Singleton bound on the diversity
order of block-fading channels [16], with the difference that
it can be achieved by any systematic code.

2) Non-precoded β + 1-slot SSAF channels with un-
equal per-slot spectral efficiency: For the sake of gener-
alization, we now suppose that modulations with different
spectral efficiencies are sent over the β + 1 slots of the
cooperation frame. We define mk as the number of bits
carried by one symbol of the modulation transmitted on
the k-th time slot. In this case, the block fading channel
is aM

(
[β + 1, β, ..., 1] ,

[
m1NPβ+1
k=1 mk

, m2NPβ+1
k=1 mk

, ...,
mβ+1NPβ+1
k=1 mk

])
Matryoshka channel. By applying (1), we obtain that if:

Rc ≤
∑i
j=1mj∑β+1
k=1 mk

(11)

then the achievable diversity order is d = β + 2− i.
For a given distribution of spectral efficiencies, it is better to

choose m1 > m2 > · · · > mβ+1, as a higher diversity order
might be achieved for a given coding rate. It is also clear that
higher coding rates than in (10) can be attained for a given
target diversity. However, the bound on the diversity does not
give any information on the coding gain of the coded scheme.
We will see later that a fine tuning of the choice of the spectral
efficiencies might be needed to optimize the coding gain. For
example, the orthogonal amplify-and-forward protocol leads
to mk>1 = 0, which provides full diversity whatever the code
rate is but exhibits a poor coding gain [7].

3) Precoded β + 1-slot SSAF channels with equal per-slot
spectral efficiency: Let us now introduce a linear precoder that
rotates symbols of s different diversity blocks together. First
of all, let us focus on two different scenarios:
• The linear precoder size is lower than (or equal to) β +

1. In this case, the dimension of the received vector yd

remains unchanged, thus there is no increase in detection
complexity when an exhaustive APP detector is used, and

no delay is introduced to the protocol. The authors in
[20] considered the design of such precoders for uncoded
systems.

• The linear precoder size is lower than (or equal to)
(d+1)(β+1)×(d+1)(β+1), where d is the delay (i.e. the
source broadcasts for d + 1 time slots before the relays
start to cooperate). In this case, the complexity of the
detector increases exponentially with d. As mentionned
previously, these precoders are mandatory to achieve
optimal performance for uncoded systems. As we focus
on channel coding issues in this work, delay-precoders
will not be considered in the sequel.

We will now present two precoding strategies and compute
the bound (1) for these two particular cases.

a) First strategy: a single precoder: First, let us assume
that s diversity blocks of size N/(β+1) are linearly precoded
together, then the diversity order of the new sN/(β+1)-length
block is the maximum diversity order of the precoded blocks.
As the other blocks keep their own diversity, it seems natural
to maximize their diversity orders in a way to increase the
coding gain at the output of the decoder (The best performance
is achieved for a block-fading channel with diversity orders as
equal as possible.). The length of the precoder input vector is
β+1. We propose to precode the first block with the s−1 last
blocks, i.e. the highest diversity order with the s − 1 lowest
ones. At the output of the APP detector, the channel model is
a Matryoshka M (D,L) channel where D = [β + 1, β, . . . , s]
and L = [sN/(β+1), N/(β+1), . . . , N/(β+1)], which leads
to the following upper-bound on the diversity order:

δmax,2(β,Rc, s) = min(s+ b(1−Rc) (β + 1)c, β + 1) (12)

Indeed, by replacing D = [β+1, β, . . . , s] and L = [sN/(β+
1), N/(β + 1), . . . , N/(β + 1)] in (1), we observe that if
Rc ≤ s/(β+1) then i = 1 and δmax,2(β,Rc, s) = D1 = β+1.
Else, if Rc > s/(β + 1), then s+ i− 1 = bRc(β + 1)c which
leads to δmax,2(β,Rc, s) = β+2− i = s+b(1−Rc)(β+1)c.
Note that, in the representation of Fig. 1, we have that
|D| = λ − s + 1 in this case. If s = 1, then δmax,2(β,Rc, s)
is equal to the Singleton bound on the diversity order of
an uncorrelated block-fading channel with equal per-block
diversity. If s ≥ 1, δmax,2(β,Rc, s) is greater than the upper-
bound on the diversity order for block-fading channels. For
example, the full diversity order cannot be achieved for the
transmission of a s = 2-precoded BICM with rate 2/3 on a
block-fading channel with diversity order 3 (the diversity is
upper-bounded by 2). For the SSAF channel, the full diversity
order can be achieved in that case, as shown in Fig. 3. Fig. 4
and 5 show the values of δmax,2(β,Rc, s) for different coding
rates with respect to the number of relays and the value of s.
We can notice that full diversity is obtained with s ≥ (β+1)Rc
in all configurations.

b) Second strategy: (β+1)/s precoders: Let us assume
that s divides β + 1, we can then use (β + 1)/s precoders:
The first precodes the highest diversity order block with the
s − 1 lowest ones. The second, if any, precodes the second
highest diversity order block with the s − 1 lowest non-
precoded ones, and so on. By using this precoding strategy that
includes several independent precoders, we further increase



5

10
-3

10
-2

10
-1

10
0

 0  2  4  6  8  10  12  14  16  18  20  22  24

W
E

R

Eb/N0(dB) at the receiver

1 rotation, s=2
unrotated
3-slot 2-relay SSAF, Outage Probability

Fig. 3. Two-relay SAF cooperative channel, Rc=2/3 RSC (25,37,35)8 code,
BPSK modulation, N = 1440.

β \ s 1 2 3 4 5
1 2 2
2 2 3 3
3 3 4 4 4
4 3 4 5 5 5
5 4 5 6 6 6
6 4 5 6 7 7
7 5 6 7 8 8
8 5 6 7 8 9

Fig. 4. δmax,2(β,Rc, s) for Rc = 1/2

β \ s 1 2 3 4 5 6
1 1 2
2 1 2 3
3 2 3 4
4 2 3 4 5
5 2 3 4 5 6
6 2 3 4 5 6 7
7 3 4 5 6 7 8

Fig. 5. δmax,2(β,Rc, s) for Rc = 3/4

the diversity of the extrinsic probabilities at the input of
the decoder, and consequently the diversity at the output of
the decoder. Indeed, the equivalent M (D,L) channel has
parameters D = [β + 1, β, . . . , β + 2 − (β + 1)/s] and L =
[sN/(β + 1), . . . , sN/(β + 1)], which leads to the following
upper-bound on the diversity order:

δmax,3(β,Rc, s) = min
“

(β+1)(s−1)
s

+ 1 +
j

(1−Rc)(β+1)
s

k
, β + 1

”
(13)

It can be easily shown that

δmax,2(β,Rc, s) ≤ δmax,3(β,Rc, s) (14)

However, the maximum diversity order δmax,2(β,Rc, s) =
δmax,3(β,Rc, s) = β + 1 is achieved for the same s ≥ (β +
1)Rc. The advantage of δmax,3(β,Rc, s) over δmax,2(β,Rc, s)
is for non-full diversity schemes. In addition, it is important
to note that the bounds in (12) and (13) have straight-forward
applications to systems employing delay precoders.

4) Precoded β+1-slot SSAF channels with unequal per-slot
spectral efficiencies: Now we reconsider the scenario of Sec-
tion IV-A.2, in which different modulation sizes are sent over
the blocks. In addition, we consider that a space-time precoder
with spreading s combines the symbol having maximum diver-
sity with those having the least s−1 diversity orders. We thus
obtain aM (D,L) Matryoshka channel with D [β + 1, β, ..., s]

and L =
[
(m1+

Ps−1
γ=1mβ+2−γ)NPβ+1
k=1 mk

, m2NPβ+1
k=1 mk

, ...,
mβ+2−sNPβ+1
k=1 mk

]
. By

applying (1), we obtain that if:

Rc ≤
∑i
j=1m

′
j∑β+1

k=1 mk

(15)

with:

m′1 = m1 +
s−1∑
γ=1

mβ+2−γ

m′j = mj otherwise

then the achievable diversity order is d = β + 2− i.
Thus, the parameters s,m1, . . . ,m2 allow for a fine tuning

of the target diversity for a given coding rate. This tuning
allows to further improve the coding gain. Unfortunately, the
theoretical analysis of coding gains for coded modulations on
block fading channels is difficult and often solved by extensive
computer simulations. Hence, the analysis of such a design
is out of the scope of this paper, which mainly focuses on
diversity orders optimization.

V. THE DIVERSITY OF D-ST-BICM OVER M -SLOT SSAF
CHANNELS (M > β + 1)

So far, we have considered the β-relay SSAF protocol with
length-β+1 cooperation frames. In [13], the authors consider
a cooperation scheme (for 2-relay SSAF and higher) in which
the cooperation frame is stretched in a way to protect more
symbols. In other words, we consider the M -slot β-relay SSAF
protocol with:

M = β + 1 + α (16)

where α is the number of additional slots. The goal of
this extension is to increase the number of coded bits that
experience full diversity. The first 1+α symbols in x from (4)
will have maximum diversity, which reduces to the first symbol
having maximum diversity in the β + 1-slot SSAF scenario.
However, this additional protection entails an increase in the
size of x , thus complexity at the APP detector increases as
well.

An illustration of this scheme is provided in Fig. 6 for the
7-slot 2-relay SSAF protocol; the source always transmits a
constellation symbol, and starting from the second time slot,
the relays cooperate in a round robin way; in this case, the first
5 out of a total of 7 constellation symbols have a maximum
diversity dmax = β + 1 = 3. It is then clear that this protocol
allows to achieve full diversity with higher coding rates. In
the sequel we will provide bounds on the diversity order of
coded modulations under this cooperative protocol.
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Fig. 6. Example of a 7-slot SSAF protocol with two relays. The cooperation
frame has length M = β+ 1 +α = 7, a light gray rectangle means that the
terminal is emitting, a dark blue rectangle means the terminal is receiving. A
white rectangle means the terminal is inactive.

A. Non-precoded M-slot SSAF

We first consider the (β+1+α)-slot β-relay SSAF protocol
without precoding. We thus obtain a Matryoshka block-fading
channel as M (D,L) with D = [β + 1, β, ..., 1] and L =
[(1 + α)N/(β + 1 + α), N/(β + 1 + α), ..., N/(β + 1 + α)].
This means that in a cooperation frame of length (β+1+α),
there are 1 + α symbols that have maximum diversity
dmax = β + 1. This makes clear the fact that higher coding
rates can be attained with this scheme. The diversity of a
non-precoded BICM over this protocol is given by:

δmax,4 = min (1 + b(β + 1 + α) (1−Rc)c, β + 1) , β ≥ 2
(17)

Hence, we attain the maximum diversity order if:

Rc ≤
1 + α

β + 1 + α
(18)

which implies that we can - theoretically - achieve full
diversity with a coding rate getting close to 1 as α increases,
but at the price of an APP detection complexity increase. To
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Fig. 7. Maximum coding rates Rc that can achieve dmax = β+1 over the
(β + 1 + α)-slot β-relay SSAF Matryoshka channel.

illustrate this bound on diversity, Fig. 7 gives examples of
the 2-relay, 3-relay, and 4-relay SSAF channels. We noticed
that with increasing the number of slots, the maximum coding
rate has a logarithmic-like growth, while the complexity at
the detector increases exponentially (as the cardinality of the
received vector yd is 2(β+1+α)m). This means that only few
additional slots can be practically added to the cooperation
frame in order to provide a reasonable rate / complexity
tradeoff.

B. Precoded M-slot SSAF

If we precode the first symbol with maximum
diversity with the s − 1 symbols having the lowest
diversity orders we obtain a M (D,L) block-fading
channel where D = [β + 1, β, ..., 1] and L =
[(s+ α)N/(β + 1 + α), N/(β + 1 + α), ..., N/(β + 1 + α)].
It is clear then that we provide s + α symbols having
maximum diversity with precoding. The bound on diversity
with a single precoder is given by:

δmax,5 = min (s+ b(β + 1 + α) (1−Rc)c, β + 1) , β ≥ 2
(19)

Full diversity is obtained for

Rc ≤
s+ α

β + 1 + α
(20)

which, again, shows that linear precoding can be used to in-
crease the obtained diversity without increasing the complexity
of an optimal APP detector.

VI. SIMULATION RESULTS

In this section, word error rate performances of different D-
ST-BICM schemes are compared to information outage prob-
ability for different system configurations. We consider the
single-relay (Fig. 8), two-relay (Fig. 9), and three-relay (Fig.
10) half-duplex SSAF cooperative channels with different cod-
ing rates and constellation sizes. We use interleavers designed
as in [19][18] with an additional constraint to transmit the
systematic bits on the higher diversity blocks of the equivalent
Matryoshka channels. We set the values of E1 = 1, and
E2 = E3 = 0.5, so that the received average energy over all the
time slots is invariant. We use rotations built using algebraic
rotations from [21] (see Appendix I) that maximize the product
distance over fading channels. In fact, as any space-time
rotation with time spreading s can help providing diversity,
these rotations are sufficient to achieve good performance in
the absence of coding gain design criterion. The number of
iterations between the detector and the decoder is fixed to 10.
Fig. 8 shows the performance of ST-BICM over the single-
relay SSAF channel using 64-QAM modulation and half-
rate coding. Following δmax,1, no rotation is needed with the
recursive systematic convolutional (RSC) code with generator
polynomials (23, 35)8, as the channel decoder with optimized
interleaving is capable of recovering the maximum available
diversity. For small to moderate signal-to-noise ratios, and
due to noise amplification at the relay, precoding the signal
constellation does not affect the performance. From moderate
to high signal-to-noise ratios, a rotation yields a severe perfor-
mance degradation (up to 5 dB). This is due to the fact that
interference between symbols (due to the rotation) becomes
too heavy for the decoder and thus affects the coding gain. This
shows that, especially for high spectral efficiencies, spreading
should be kept as small as possible so as to guarantee diversity,
and it should even be avoided when not needed.

In Fig. 9, various coding strategies using RSC codes for the
2-relay SSAF protocol, all at an information rate of R = 4/3
b/s/Hz, are compared to Gaussian input outage probability. The
first observation is that orthogonal coded schemes suffer from
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Fig. 8. Single-relay NAF cooperative channel, Rc=1/2 RSC (23,35)8 code,
64-QAM modulation, N = 1296.

weak coding gains [7], although providing full diversity. For
the curves employing the SSAF protocol, coding strategies
following δmax,1 in (10), δmax,2 in (12), and the bound on
the coding rate derived in Section IV-A.2. The best strategy
is shown to be the Rc = 2/3 code with an s = 2 rotation
with QPSK modulation in the three slots, following δmax,2.
Note that the rate-1/3 code, that has a better free distance
(dfree = 7) , is outperformed by the precoding strategy with a
weaker code (the rate-2/3 code has dfree = 3). Fig. 10 shows
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Fig. 9. 3-slot 2-relay SSAF protocol, N = 1296, R = 4/3 b/s/Hz. The set of
spectral efficiencies over the cooperation frame is written as (m1;m2;m3),
and QAM modulations are employed.

the performance of the SSAF with three relays using QPSK
modulation and the half-rate (133, 171)8 RSC code. The three
strategies following δmax,2 and δmax,3 achieve full diversity
with Rc = 1/2. Full precoding with s = 4, one-rotation and
two-rotation precoding with s = 2 all achieve the same coding
gain. This is probably because a powerful convolutional code
is used. In case no precoder is available at the source and
we want to transmit at the same coding rate, another option
is to follow δmax,4 from (17), thus extending the cooperation
frame with α = 2 slots. This strategy allows to achieve full
diversity without precoding, as shown with the dashed blue
curve. Finally, it is important to note that simulations of coded

modulations with (β + 1)2 × (β + 1)2 algebraic precoders as
in [11] showed no gain with respect to (β + 1) × (β + 1)
precoders in a presence of a powerful channel code, at a cost
of a much higher detection complexity.
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Fig. 10. 3-relay SSAF cooperative channel, QPSK modulation, Rc = 1/2
(133, 171)8 RSC code.

VII. CONCLUSIONS

We studied coding strategies for the non-orthogonal
amplify-and-forward half-duplex cooperative fading channel.
We derive several bounds on diversity orders a coded modula-
tion can achieve with low decoding complexity. We show that,
given a coding rate, full diversity can be achieved either by
space-time precoding, or by sending different spectral efficien-
cies over the slots, or even by stretching the cooperation frame
(provided there are two relays or more). Moreover, although no
closed-form expressions for the coding gain were derived, we
showed that when using appropriate interleaving and space-
time rotations, the diversity orders of the extrinsics at the
output of the detector can be equal and thus performance is
enhanced. Finally, performances close to outage probabilities
for different number of relays, coding rates, and constellation
sizes are shown.

APPENDIX I
EXAMPLES OF SPACE-TIME PRECODERS

The real 2×2 cyclotomic rotation from [21] can be written
as:

S1 =
[

cos(θ) sin(θ)
sin(θ) − cos(θ)

]
(21)

with θ = 4.15881461. Suppose now we have to transmit a
half-rate code over the 3 relay SSAF channel. According to
δmax,2, one rotation with s = 2 is sufficient. This gives the
following space-time precoder:

S2 =


cos(θ) 0 0 sin(θ)

0 1 0 0
0 0 1 0

sin(θ) 0 0 − cos(θ)

 (22)
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According to δmax,3, we need two rotations with s = 2 each.
This gives the following space-time precoder:

S3 =


cos(θ) 0 0 sin(θ)

0 cos(θ) sin(θ) 0
0 sin(θ) − cos(θ) 0

sin(θ) 0 0 − cos(θ)

 (23)

The 4 × 4 rotation used in this paper is the Kruskemper
rotation from [21] with normalized minimum product distance
of 0.438993.
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