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Abstract—In wireless sensor networks, a robust synchroniza-
tion is an enabler for optimizing performance, for example
allowing powerful radio resource management and energy saving.
In this paper, we combine a consensus algorithm, already proven
efficient for the synchronization of wireless sensor networks, with
a random broadcast for fully distributing its implementation.
Unfortunately, when the distances between the wireless devices
increase, the accumulation of non-negligible propagation delays
resulting from the consensus algorithm introduce a drift in
addition to the clock skew and offset of each node. We introduce a
monitoring and broadcasting of the drift correction by a reference
node that does not participate to the consensus algorithm, and
show this allows for both solving the clock drift and aligning all
nodes to the reference node’s clock.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been extensively
studied in order to bring easy, robust, and cost efficient deploy-
ments of telecommunication systems. The WSN synchroniza-
tion techniques have been investigated in [1], [2], [3] in the aim
of reducing the data collection latency or reduce the energy
consumption of the telecommunication infrastructure. Several
distributed synchronization protocols have been addressed for
low-scale sensor networks, with almost no propagation delay
between the nodes. For example, pulse-coupled oscillators
[4] have been studied in a slotted-ALOHA scenario [5] and
relatively small networks with low propagation delays.

The graph theory is a powerful analytical tool to design
distributed algorithms for synchronizing networks including
large number of nodes. Recently, the interest has grown on
the consensus algorithms [6] that provides convergence of
several processes to the same value in a distributed fashion.
The synchronization is one of the applications of the consensus
algorithm among many others [7]. The consensus algorithms
has been deeply analyzed from an algebraic point of view
[8][9] and for complex random topologies [10]. In [11],
authors use MAC-layer time-stamping so as to quickly have
access to the nodes time and periodically resynchronize the
network.

In this paper, we consider a WSN where the sensors are
placed inside or outside houses, receive commands from a
concentrator/coordinator and send back statistics. The WSN
topology is evolving and nodes can move, appear or disappear.
The distributed synchronization protocol proposed in this
paper for half-duplex devices combines random broadcast
with consensus between the nodes. Furthermore, a coordinator
monitors the system and broadcasts a drift correction through
the WSN.

In Section II, we present the distributed protocol and the
system model and parameters. In Section III, we make an
asymptotic analysis of the random system behavior. In Section
IV, we propose a correction of the global system clock drift
induced by the propagation delays and the nodes local clock
drift by applying an estimation/correction from the coordina-
tor. Simulation results are shown in VI in order to illustrate
the theoretical results presented in this paper.

II. SYSTEM MODEL AND PARAMETERS

We consider a WSN comprising N nodes having half-
duplex transmission and reception capabilities. The wireless
mesh network connectivity is represented by a graph G, where
C is the N × N connectivity matrix of the graph. The
graph has one connected component, i.e., a path in the graph
exists between any two nodes, and particularly between the
coordinator and any other node.

In that case, we propose a distributed synchronization
algorithm based on a random broadcast timing exchange, i.e.,
at each iteration or step, each node equiprobably selects at ran-
dom its transmission or reception state. When in transmission
state, the node broadcasts a synchronization sequence. When
in reception state, the node receives a superimposition of the
synchronization sequences from the transmitting neighboring
nodes, and can estimate the mis-synchronization with each
node by using correlation-based detection techniques. Thus,
at a given step n, each node either transmit or receive timing
information to/from its neighboring nodes, and the random
graph Gn is direct and independent from one step to the other.

Let Λn be the N × 1 indicator vector of nodes transmitting
at step n. If the k-th node is transmitting, Λn(k) = 1, and
Λn(k) = 0 otherwise. The instantaneous connectivity matrix
of the directed graph Gn at step n is denoted Ωn and is equal
to

Ωn = C�
[
(1−Λn)ΛT

n

]
, (1)

where � is the element by element matrix multiplication
operator and 1 is a all-ones vector of length N .

A consensus algorithm is then applied. At each step n, the
k-th node updates its synchronization time tk,n according to an
averaging of the relative synchronization time received from
other nodes, as follows:

tk,n = tk,n−1 + T + εk + βk,n
∑
j

Ωn(k, j)×

(tj,n−1 − tk,n−1 + τj,k + εj − εk)− ξk,n (2)



where τj,k is the propagation delay between the k-th node and
the j-th node, T is the time period between two synchroniza-
tion steps. The k-th node oscillator being not perfect, a time
clock drift εk occurs between two synchronization steps with
respect to an absolute perfect reference clock. The parameters
βk,n will be determined in the following in order to ensure
convergence to the system. Finally, a correction factor ξk,n is
applied, and will be discussed in section IV.

We define Φn as a vector which k-th entry is the mis-
synchronization Φn(k) = tk,n − t0,n at step n between the
k-th node and an absolute reference clock t0,n. The whole
system model can be rewritten in a matrix form as

Φn = Mn(Φn−1 + ε) + βnD(Ωnτ )− ξn, (3)

where Mn = I − βnLn, βn = diag(β1,n, . . . , βN,n), and
D(X) creates a vector with the diagonal elements of X.
By definition, the matrix Ln is the Laplacian matrix of the
graph at step n, i.e., the subtraction between the degree and
connectivity matrices:

Ln = diag(|Ω1,n|, . . . , |ΩN,n|)−Ωn, (4)

where |Ωj,n| =
∑N
i=1 Ωn(j, i) is the degree of the j-th node

at step n, i.e., the number of neighbors from which it receives
a synchronization signal at step n.

By solving the recurrence in (3), one obtain

Φn = anΦ0 + bnε+ cn − ξ̂n (5)

where

an =

n∏
i=1

Mi (6)

bn =

n∑
j=1

n∏
l=j

Ml (7)

cn =

n−1∑
j=1

n∏
l=j+1

MlβjD(Ωjτ ) + βnD(Ωnτ ) (8)

ξ̂n =

n−1∑
j=1

n∏
l=j+1

Mlξj + ξn (9)

We first consider that βn = βI, where β is a global
correction factor applied to all nodes. In next sections, we
perform a statistical and asymptotic analysis of the system in
order to define β for convergence and ξ̂n for drift correction.
Another strategy for the βn correction that further improve
the system performance will be presented in section V.

III. ANALYSIS OF THE RANDOM BROADCAST-BASED
AVERAGE CONSENSUS ALGORITHM

In this section, we derive the asymptotic expression of (6),
(7), (8) in order to derive the asymptotic behavior of (5).

A. Asymptotic expression of an

First, the i.i.d properties of the random matrices Mi give

an =

n∏
i=1

Mi ∼ E [Mi]
n

(as n→ +∞). (10)

From (1), E
[
(1−Λi)Λ

T
i

]
= 11T /4 and E [|Ωi,n|] =

|Ci|/4, we observe that E [Li] = 1
4L where L is the Laplacian

matrix of the graph G defined and diagonalized as:

L = diag(|C1|, . . . , |CN |)−C = Q∆Q−1 (11)

where |Cj | =
∑N
i=1 C(j, i) is the number of neighbors of

the j-th node,and ∆ = diag(δ1, . . . , δN ). As a result, the
Laplacian matrix has one null eigenvalue δ1 = 0 associated
to the eigenvector 1/

√
N . When the graph has one connected

component, the other eigenvalues δi > 0 are strictly positive.
Then, (10) leads to

an ∼ Q

(
I− β

4
∆

)n
Q−1 (as n→ +∞). (12)

In order to ensure a convergence of the system with no
delay and clock drift, one must satisfy

∀i > 2,

∣∣∣∣1− βδi
4

∣∣∣∣ < 1 (13)

which is for example achieved as in [12] by setting 0 <
β < 4/max(|Ci|) < 8/max(δi). The higher the value of
β, the higher the convergence speed of the system. As a
result, E [Mi]

n asymptotically has one non-null eigenvalue
equal to one, and associated to the null eigenvalue of L and
its eigenvector 1/

√
N . Finally, the asymptotic expression of

an is
an ∼

1

N
11T . (14)

B. Asymptotic expression of bn

Equivalently, in order to derive the asymptotic expression
of (5), we consider the asymptotic expectation of (7):

bn ∼ E

 n∑
j=1

n∏
l=j

Ml

 (15)

= Q

n∑
j=1

(
I− β

4
∆

)n−j+1

Q−1 (16)

= Qdiag (λ1,n, . . . , λN,n) Q−1 (17)

where{
δi = 0 ⇒ λi,n = n,

δi > 0 ⇒ λi,n = 1−(1−βδi/4)n+1

βδi/4
− 1.

(18)

Thus, if the convergence condition (13) is satisfied, one obtain

bn ∼ Qdiag
(
n, 4

βδ2
− 1, . . . , 4

βδn
− 1
)

Q−1 (19)

= n+1
N 11T + Vdiag

(
4
βδ2

, . . . , 4
βδn

)
VT − I (20)

where, from (11), we denote V as the N × (N − 1) matrix
of the N − 1 eigenvectors of L associated to the eigenvalues
δ2, . . . , δN , such that VVT = I− 1

N 11T .



C. Asymptotic expression of cn

Finally, by using the independence relationship

∀i 6= j, E [MiD(Ωjτ )] = E [Mi]E [D(Ωjτ )] (21)

and E [D(Ωjτ )] = 1
4D(Cτ ), one obtain

cn ∼ E

n−1∑
j=1

n∏
l=j+1

MlD(Ωjτ ) +D(Ωnτ )

 (22)

=
1

4

Q

n−1∑
j=0

(
I− β

4
∆

)j
Q−1

D(Cτ ) (23)

=
β

4
Qdiag (α1,n, . . . , αN,n) Q−1D(Cτ ) (24)

where {
δi = 0 ⇒ αi,n = n,

δi > 0 ⇒ αi,n = 1−(1−βδi/4)n
βδi/4

.
(25)

Thus, if the convergence condition (13) is satisfied, one
obtain

cn ∼ Qdiag
(
n

4
,

1

βδ2
, . . . ,

1

βδn

)
Q−1D(Cτ )

=
n

4N
11TD(Cτ )

+Vdiag
(

1

βδ2
, . . . ,

1

βδn

)
VTD(Cτ ). (26)

D. Asymptotic expression of Φn

By using the asymptotic results (14), (20) and (26), (5)
becomes

Φn ∼ nµ+ η − ξ̂n, (27)

where

µ =
11T

N

(
ε+

1

4
D(Cτ )

)
(28)

and

η =
11T

N
(Φ0 + ε)− ε

+ Vdiag
(

1

δ2
, . . . ,

1

δn

)
VT (4ε/β +D(Cτ )) (29)

and where 11TΦ0/N is a vector filled with the average of
initial states Φj,0, 11Tε/N is a vector filled with the average
clock drift of the nodes, and 11TD(Cτ )/N is a vector filled
with the average propagation delay between neighbors.

By setting the correction factor ξ̂n = 0, several observa-
tions can be made from (27). First, the constant part η of
the asymptotic expression (27) shows a mis-synchronization
between nodes, which mainly depends on the cumulative
delays between each node and its neighbors, and on the clock
drift being most of the time negligible with respect to the
propagation delays, except if the synchronization period T
is large. Then, we observe that all the nodes experience a
same clock drift, resulting from all nodes clock drifts and all
the propagation delays in the system. Indeed, coefficients of
µ are equal to the sum of the average mean of the entries

of ε and 1
4D(Cτ ). This implies that one can use the same

clock drift correction for all nodes, i.e., ξn = 1ξn. As a
remark, without any propagation delay, and by assuming that
E[εj ] = 0, no clock drift correction is needed and the proposed
synchronization protocol allows for a cooperative correction of
the drift for cheap devices with low-precision oscillators.

IV. SYSTEM DRIFT CORRECTION BY A REFERENCE NODE

In this section, we consider the correction of the system
linear drift expressed as nµ in (27). We observe that the
expression (9) of ξ̂n is similar to the expression (8) of cn.
One key assumption allowing the derivation of cn is the
independence relationship (21) resulting from the random
broadcast protocol. Equation (9) points out that the drift
correction should be independent of all random connectivity
matrices realizations, which cannot be achieved by using
the observation of one or more nodes participating to the
consensus algorithm. Thus, in order to reach independence
between the correction factor and the random connectivity
variables, we propose to use the node 0, which is for example
a coordinator node, in order to evaluate the system drift and
correct it. By definition, we set for all step n, Φ0,n = 0
and ε0 = 0. The node 0 has a 1 × N random connectivity
vector Ω̂n with the N nodes of the graph. It applies at each
iteration the computation of the updated synchronization time
from the consensus (2), makes the difference with its reference
synchronization time, and estimates the system drift

ξn = β
∑
j

Ω̂n(j) (Φj,n−1 + τj,0 + εj) . (30)

As a remark, the coordinator does not update its synchroniza-
tion time as it is a reference for the absolute time and clock
drift. Then, the coordinator broadcasts ξn through the wireless
mesh network, which implies

ξn = β1Ω̂n (Φn−1 + τ0 + ε) (31)

where τ0 = [τ1,0, . . . , τN,0]T .
Let us note that, any random matrix Li being a Laplacian

Matrix, Li1 = [0 . . . 0]T , which involves that Mi1 = 1 and
∀(i, j),Miξj = ξj .

Thus, (9) becomes

ξ̂n =

n∑
j=1

ξj =

n−1∑
i=1

n∏
j=i+1

(I− β1Ω̂j)β1Ω̂i (Φi−1 + τ0 + ε)

(32)
The term

∑n
j=1 ξj shows that the same result can be

obtained by broadcasting a long term filtered version of
ξn, instead of all ξn. This allows for achieving a trade off
between the broadcast period (and overhead), and the adaptive
algorithm speed.

By using the statistical independence of Ω̂j random vec-
tors, E[Ω̂j ] = θ̂ where 2θ̂ is the long term connectivity
vector between the coordinator and its |θ̂| neighbors, and
(I− β1θ̂)n−iβ1θ̂ = (1− β|θ̂|)n−iβ1θ̂, one obtain

ξ̂n ∼ 1

n∑
i=1

(1− β|θ̂|)n−iβθ̂ (Φi−1 + τ0 + ε) . (33)



By substituting (33) in the asymptotic linear form nµ +
η of Φn, and by using the asymptotic arithmetic-geometric
progression expression, we obtain:

Φn ∼ n(I−1θ̂/|θ̂|)µ+η+1
θ̂

|θ̂|

(
µ

β|θ̂|
− (η + τ0 + ε)

)
.

(34)

Finally, by using the fact that θ̂1/|θ̂| = 1, and by using (28)
and (I−1θ̂/|θ̂|)µ = 0, we observe that the asymptotic behav-
ior of Φn has no drift anymore. Furthermore, the asymptotic
limit is equal to:

Φn ∼
1

|θ̂|
11T

4N
D(Cτ )−

(
I− 1

β|θ̂|
11T

N

)
ε− 1

θ̂

|θ̂|
τ0

+

(
I− 1

θ̂

|θ̂|

)
×Vdiag

(
1

δ2
, . . . ,

1

δn

)
VT

(
4ε

β
+D(Cτ )

)
(35)

which does not depend on the initial nodes states Φ0.
This leads to the following important and non-intuitive

result: by not participating to the consensus algorithm and
broadcasting the drift correction applied at each node, the
coordinator make the nodes converge around its reference time
clock Φ0,n = 0.

V. AVERAGING THE TIMING DIFFERENCE

In this section, we introduce another strategy for the
choice of the correction factors β. On top of to the global
correction factor applied in previous sections, we introduce
a local correction at each node in order to compute the
average timing difference of transmitting nodes, i.e., by setting
βn = βdiag({f(|Ωi,n)|}), where ∀x > 0, f(x) = x−1 and
f(0) = 0. In this case,

E [βiLi] =
β

4
diag


|Ck|∑
j=1

2−|Ck|

j

(
|Ck)|
j

)
L ≤ β

4
L.

(36)
Thus, any β satisfying the convergence condition (13) also

ensures convergence for this scenario.
A thorough analysis of this scenario is difficult and out of

the scope of this paper. However, one can make the following
observation: the real-time averaging of the timing difference
changes the eigenvalues δi in (35) and results in more equals
values exhibiting better performance. The analysis is left for
further studies and the performance improvement will be
illustrated in the simulation results provided in section VI.

VI. SIMULATION RESULTS

In this section, we compare the proposed algorithm to a
multi-hop based protocol which corresponds for each node to
a synchronization to the average of the sequences received
at a first synchronization step, and a retransmission during
the next step. Since both algorithm have no clock drift with
respect to the coordinator clock, we only compare relative
timing difference. The wireless mesh network comprises N

Fig. 1. Cumulative density function of the synchronization error to the
coordinator for the multi-hop and the consensus algorithms with no clock
drift at the nodes or a maximal clock drift of 10ppm with a frame period of
100ms. Average number of neighbors=17.

nodes uniformly placed at random in a circular area around
the coordinator. In an initial step, we assume that a power
control algorithm ensures a connectivity of each node to the
system. For N = 1000 and a 1km-radius deployment, up to
30 hops are required for communication from the coordinator
to the WSN edge nodes. In this paper, we consider that all the
nodes are transmitting with the same power. A micro cell path
loss model [13] provides the propagation attenuation between
houses in a suburban environment. An edge of the graph G
exists between two nodes if the SNR on the associated wireless
link is above a given threshold.

In Fig. 1, N = 1000 nodes are uniformly placed at random
in a 1km2 circular area around the coordinator. A transmit
power of 0 dBm for the synchronization sequence allows for
achieving an average connectivity of 17 neighbors per node,
which are in average distant of 35m and corresponds to an
average delay of 0.12µs in free space.

The cumulative density functions of the synchronization
error to the coordinator for the multi-hop synchronization
algorithm and the random-broadcast based consensus algo-
rithms with a drift correction by the coordinator are compared.
We consider a random initialization for the random-broadcast
based consensus algorithm, which corresponds to a case where
the node turns on at any moment and runs the algorithm.
By doing so, the synchronization is implemented in a fully
distributed fashion for the nodes, and their initial clock timings
have no impact on the system asymptotic behavior. We first
assume that the nodes oscillator have no clock drift. The
coordinator only monitors the system behavior and broadcasts
the measured drift ξn resulting from the propagation delays
accumulation. We observe that, by using the consensus algo-
rithms, the nodes are better synchronized to the coordinator
which provides the reference clock only by sending the
clock drift correction. The consensus with averaging brings
additional performance improvement in that case. We now
assume that the synchronization step periodicity is T = 100ms
and that the oscillators precision is uniformly distributed with
an upper bound of 10ppm, which result in an inter-frame de-



Fig. 2. Average synchronization error to the coordinator, with a varying
maximal clock drift at each node and no propagation delay. Number of
nodes=200.

Fig. 3. Average synchronization error to the coordinator, with a varying
connectivity (sequence boost). Number of nodes=300.

synchronization range of [−1 1]µs at each node due to the
clock drift. This scenario illustrates a lower gain due to the
dominating effect of the clock drifts.

This behavior is confirmed by Fig. 2, where the algorithms
performance is drawn as a function of the nodes maximal clock
drift for a system with no propagation delay. The consensus
algorithm with averaging of the timing difference outperforms
other algorithm for low clock drift values.

In Fig. 3, the synchronization sequence is boosted so as
to make the average connectivity of each node vary. In Fig.
4, the relative position between nodes is scaled so as to make
the average delay between the neighboring nodes vary. In both
cases, the consensus method with an averaging of the timing
difference outperforms the multi-hop synchronization and the
consensus algorithm with a global correction factor only.
We remark that the performance of the consensus algorithm
degrades when the network connectivity decreases, which
is a well known behavior of the consensus algorithm. This
indicates that a parallel power control algorithm must be
performed so as to equalize the nodes average connectivity.
This will be addressed in future work.

Fig. 4. Average synchronization error to the coordinator, with a density
of nodes expressed in average delay to the neighboring nodes. Number of
nodes=300.

VII. CONCLUSIONS

We have presented a random broadcast consensus synchro-
nization algorithm for wireless mesh networks. In a fully dis-
tributed implementation, the non-negligible delay propagation
and clock drift cause a global system clock drift. We introduce
a correction of this drift by a coordinator that is not involved in
the cooperative synchronization process, that furthermore align
all nodes synchronization times to the coordinator reference
clock.
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