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Abstract—This paper considers the problem of coordinated
multi-point transmission from transmitter devices that acquire
noisy and partial channel state information (CSI) estimates from
local feedback links. As cooperative multi-antenna transmission
often relies on the availability of global channel estimates, we
propose a novel decentralized algorithm that produces MMSE-
optimal channel estimates on the basis of combining local
feedback and inter-transmitter communications. To this end, we
assume the devices are equipped with rate-limited bi-directional
communication links over which they exchange a finite number of
CSI-related bits. We propose a low-complexity cooperative chan-
nel estimation algorithm which exploits the local communications
near-optimally and is robust to arbitrary feedback noise statistics.
The proposed method has application in future decentralized
CoMP scenarios, where we show clear advantages over the
conventional channel state information exchange mechanisms.

I. INTRODUCTION

Coordinated multi-point (CoMP) transmission methods
such as network MIMO [1] [2] [3], coordinated beamforming
and scheduling [4] [5] [6], and interference alignment [7] often
require the acquisition of global channel state information
(CSI) at all the devices that engage in the coordination [8].
In practice, in Frequency Division Duplex (FDD) scenarios,
CSI acquisition at the transmitter exploits local feedback links
that provide at best a noisy and partial estimate of the total
(network-wide) CSI matrix at each base station. In the current
LTE release for instance, only the CSI related to a subset
of the users served by one base station are acquired by that
base station. In turn the cooperating transmitters can rely on
signaling interfaces (such as X2 [9] alike interface in LTE)
that provide limited inter-device communication capabilities
so as to enable global channel estimates, hence facilitate
cooperation. Currently, such links are subject to a coarse design
however, limited to communicating the CSI coefficients that
are missing at one transmitter, with no regard the statistical
quality of the local information already existing at that trans-
mitter, and ignoring potential benefits of correlated channel
estimates between two transmitters, i.e, the fact that two base
station may both obtain estimates of the CSI related to a
common user.

In this paper we recast this problem into a more general and
systematic decentralized channel estimation problem with side
information. We start off with transmitters having acquired an
initial amount of CSI from local feedback links. It is essential
to note that this initial local CSI can be of completely arbitrary
nature in our framework, including scenarios such as limited

feedback from an arbitrary subset of users, with arbitrary esti-
mation error statistics. Our framework also includes so-called
hierarchical CSI scenarios where some transmitters are called
to play a role of master in a cluster of small-cells, collecting
more information than surrounding slave transmitters.

Based on the given initial local CSI structure, we design a
two-step decentralized channel estimation aiming at producing
minimum mean squared error (MMSE) optimal estimates at
all cooperating transmitters. The new approach involves the
transmitters (1) exchanging with each other shaped quantiza-
tion representations of their local channel data, under a rate
constraint on the inter-transmitter communication. Secondly,
(2) the transmitters construct a final channel estimate based
on a suitable combination of their local CSI and the data
received from surrounding devices. Interestingly, the steps
(1) and (2) are intertwined but fortunately can be solved
jointly. Finally, when the inter-device communication links
are bidirectional and total amount of bits for all coordination
links are constrained, an interesting question is how many bits
of channel-related information will flow in each directions.
In other words which transmitters shall teach more to other
transmitters (resp. learn more from them) about the channel
state.

It has to be noted that the problem of cooperative channel
estimation is rooted in the information theoretic framework
of network vector quantization [10]. Specifically, for two
transmitters cooperation, it is the problem of lossy source
coding with side information (a.k.a. Wyner-Ziv coding) [11].
When more transmitters are involved in the cooperation, it
is a generalization of Wyner-Ziv coding with the decoder
takes into account multiple instances of correlated and encoded
information as well as the side information. The information
theoretical bound and asymptotically bound-achieving quan-
tizer design for Wyner-Ziv coding are well analyzed, for
example, in [12], [13], [14], [15], [16] and [17].

In this paper, we propose a novel algorithm (referred to
as coordination shaping). For the two transmitters cooperation
scenario, the proposed algorithm outperforms the asymptotic
optimal Wyner-Ziv coding algorithm [17] in the low rate region
and the performance asymptotically achieves the Wyner-Ziv
bound in the high rate region. The proposed algorithm works
for multi-transmitter cooperation scenarios as well, which are
generalizations of Wyner-Ziv coding, to jointly optimize all
the involved quantizers. Finally, our optimization framework
allows to find the optimal bits allocation to each coordination



links in the case when the total amount of bits for the
coordination links are constrained.

More specifically, our contributions are as follows:

• We present a framework for cooperative decentralized
channel estimation which adapts to scenarios with
arbitrary noise and feedbacks, under a finite bit com-
munication link between cooperators.

• We derive a low complexity optimal algorithm which
determines what relevant information about the chan-
nel state is best to exchange between the devices. The
solution takes the form of a vector quantizer based
on a weighted distortion measure, where the weight is
adapted to the CSI error covariance.

• We exhibit how to combine the exchanged limited CSI
together with the local CSI. We use a weighted linear
combination where the weights can be obtained from
a provably convergent algorithm.

• In the case the communication between the cooperat-
ing devices is over a bi-directional link with a total
amount of bits constraint over all coordination links,
we present an algorithm that determines the optimal
bits allocation across the links so as to minimize an
average mean squared error (MSE) metric.

The rest of the paper is arranged as follows. Section II in-
troduces the system model and describes the problem. Section
III provides the optimization of the reconstruction function
and Section IV performs the optimization of the quantizer.
Section V solves the coordination link bit allocation problem
and numeric result for both decentralized channel estimation
and the coordination link bit allocation are presented in Section
VI. Section VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a communication system where K transmitters
(TX) such as small cell base stations communicate with L re-
ceivers (RX) over a network MIMO channel. Each transmitter
TXi, i = 1, . . . ,K is equipped with M transmit antennas while
each receiver RXj, j = 1, . . . , L is equipped with N receive
antennas. The propagation channel between TXi and RXj is
denoted as Hji ∈ CN×M .

We now assume that each transmitter acquires an initial
estimate of the global channel state from any pilot-based,
digital or analog feedback mechanism. The CSI made initially
available at TXi is modeled as:

Ĥ(i) = H + E(i)

H =

 H11 . . . H1K

... . . .
...

HL1 . . . HLK

 (1)

where Ĥ(i) ∈ CNL×MK is an arbitrary CSI estimate for
H at TXi. H ∈ CNL×MK is the true CSI of the network
MIMO channel and E(i) ∈ CNL×MK is the estimation error
at TXi. For ease of exposition, we assume that the true network
MIMO channel satisfies h = vec(H) ∼ CN (0, I). Hence, the
actual channels are uncorrelated antenna-wise and user-wise,
while the estimates at various TXs are correlated through H.

The channel independent estimation error E(i) satisfies e(i) =
vec(E(i)) ∼ CN (0,Qi). The estimation errors for different
TXs are assumed independent, i.e, E{e(i) ·e(j)H} = 0,∀i 6= j.

Note that this CSI feedback model is quite general and
includes diverse scenarios from local feedback to global noisy
feedback. Representing various CSI information structure can
be done by varying the statistics (i.e. Qi) at the various
transmitters, since larger coefficients on some elements of Qi

induces a reduced information for the corresponding channels
at TXi, inducing partial CSI. Note that some feedback designs
may lead to each transmitter having some noisy information
about all the user channels. For instance in the broadcast
feedback scenario, each RX acquires its downlink CSI from all
transmitters (using pilots), quantizes it, then broadcasts it on
the uplink feedback channel. Since the link strength between
RX and each TX varies for each TX-RX pair, each TX then
receives a different noisy version of the same global CSI.

In Fig. 1, the cooperation information exchange between
two transmitters TXi and TXk are illustrated. TXk send to TXi
a suitably quantized version of his local CSI estimate ĥ(k)

through the coordination link, denoted here by zki. Similar
operation is performed by TXi to provide TXk zik. Based on
the local CSI and exchanged CSI, both transmitters compute
a final estimate.
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Fig. 1. Decentralized cooperative channel estimation across two base stations
engaged in multi-cell MIMO downlink precoding.

The final estimate at TXi is denoted by h̃(i), a recon-
struction function gi(.) is used at TXi which combines local
CSI ĥ(i) and exchanged CSI zki to get h̃(i). The quantization
operation associated to the link from TXk to TXi is defined
as Qki : CNMKL×1 7→ Cki, zki ∈ Cki, | Cki |= 2Rki where
Cki is the codebook for the quantizer Qki. Finally Rki is the
finite number of bits on the coordination link between TXk
and TXi. All cooperation information is exchanged in a single
shot and simultaneously with other transmitters.

The goal of this paper is to find (i) the optimal reconstruc-
tion function gi(.) and (ii) the optimal fix rate quantizer Qki

such that the expectation of the per dimensional MSE for the



final channel estimate

D(i) =
1

n
E{‖ h− h̃(i) ‖2} (2)

is minimized. Later on in this paper, we also optimize the
values of Rki under a global backhaul constraint.

Regarding the quantization on coordination link, the op-
timal vector quantization (VQ) is depicted in Fig. 2. zki and
quantization error eQki

are shown to be uncorrelated, eQki
and

ĥ(k) are dependent [18]. The covariance matrices for ĥ(k), zki
and eQki

satisfy Qĥ(k) = Qzki
+ QQki

. Since the input of
the quantizer ĥ(k) is Gaussian, we obtain an upper bound of
the impact of quantization by assuming that the quantization
error eQki

= ĥ(k) − zki is also Gaussian distributed as
eQki

∼ CN (0,QQki
) [19]. Similar to [20] and based on the

assumption for eQki
as Gaussian, we can approximate the VQ

procedure by a gain-plus-additive noise model (similar to the
scalar quantizer case in [21]) shown in Fig.3.

Proposition 1. Assume the quantization error eQki
∼

CN (0,QQki
), the optimal vector quantization for ĥ(k) ∼

CN (0, I + Qk) can be approximated with the quantization
result zki satisfying:

zki = (I + Qk −QQki
)(I + Qk)

−1(h + e(k)) + qki (3)

where qki, h and e(k) are uncorrelated random vectors, qki ∼
CN (0, (I + Qk −QQki

)(I + Qk)
−1QQki

).

Proof: This is just a trivial generalization of gain-plus-
additive noise model for optimal scalar quantizer in [21].
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Fig. 2. Quantizer model for optimal vector quantization.

  

 

 

 

 

 

  

Fig. 3. Gain-plus-additive noise model to approximate the optimal vector
quantizer.

In the reminder of this work, both the design of recon-
struction functions and optimal quantizers will be based on
(3).

III. RECONSTRUCTION FUNCTION DESIGN

This section addresses the aforementioned sub-problem of
the optimal reconstruction function gi(.) design in general
setting of multi-transmitter cooperation (K ≥ 2). For the
reason of simplicity, we only consider the reconstruction
function as a weighted linear combination of estimates at TXi.

Therefore, the final estimate at TXi is:

h̃(i) =
∑
k∈Ai

Wkizki + Wiiĥ
(i) (4)

where the set Ai contains the indices of TXs that are
cooperating with TXi. Thus, according to (3), with equations
(2) and (4) the optimal weight combining matrices can be
derived.

Proposition 2. The optimal weight combing matrices
{W∗

ki,W
∗
ii, k ∈ Ai} for the optimization problem:

min
Wki,Wii,k∈Ai

1
nE{‖ h− h̃(i) ‖2}

s.t. h̃(i) =
∑

k∈Ai

Wkizki + Wiiĥ
(i)

can be obtained from:[
W∗

ii W∗
l1i

. . . W∗
lCi

i

]
= ΥiΩ

−1
i . (5)

The optimum per dimensional MSE attained is:

D(i)∗ =
1

n
tr{I + Q−1i

+
∑
k∈Ai

(
(I + Qk)(I + Qk −QQki

)−1(I + Qk)− I
)−1}−1

(6)

where Υi,Ωi are given below, the set Ai has cardinal |Ai| =
Ci and is denoted by Ai = {l1, . . . , lCi}.

Υi =
[

I AH
l1i

. . . AH
lCi

i

]

Ωi =


I + Qi AH

l1i
. . . AH

lCi
i

Al1i Pl1i . . . Al1iA
H
lCi

i

...
...

. . .
...

AlCi
i AlCi

iA
H
l1i

. . . PlCi
i


Plji = I + Qlj −QQlji

Alji = (I + Qlj −QQlji
)(I + Qlj )

−1, j = 1 . . . Ci

Proof: Due to lack of space, we only provide a sketch for
the proof, the details are provided in the full size version of this
paper [22]. According to (3), substitute zki into (4) and then
(2), set the partial derivatives ∂D(i)

∂Wii
= 0, ∂D(i)

∂Wki
= 0, k ∈ Ai

and solve this equation system, we can get (5). Insert (5) into
(4) and then (2), after a few simplification we can get (6).

IV. QUANTIZER DESIGN

Based on the weight expressions above, we can now
proceed with the task of optimizing the quantizer used for
communicating CSI-related bits from one transmitter to an-
other. The main goal is to optimize QQki

such that D(i)∗ can
be minimized.



First, it’s obvious that a conventional VQ will not provide
the best zki as it typically minimizes the distortion in a way
that ignores the local CSI available at TXi.

As Qi, i = 1 . . .K reflect the accuracy of local CSI and are
assumed to be known to all TXs, the quantizer should allocate
the quantization resource where most needed, i.e. in channel
elements or directions that are known best by the TXk and
least known by TXi. Thus, we propose to use the weighted
square error distortion: dQki

(x,y) = (x− y)HBki(x− y) as
the distortion measure of the quantizer Qki, where the positive
definite weight matrix Bki is a variable to be optimized.

Importantly, we can calculate QQki
in the asymptotic case

when the given coordination link rate Rki is sufficiently large,
i.e. the large quantization rate regime.

Proposition 3. In the large quantization rate regime, for
a quantizer with S quantization level, the quantization er-
ror covariance for a n dimensional complex random vector
source x ∼ CN (0,Γ) using optimal weighted mean square
error distortion based vector quantization with weight matrix
B is Qx = 2S−

1
nM(S0)2π(

n+1
n )n+1 det(Φ)

1
2n B−1, where

M(S0) is the minimal normalized second moment for all
space-filling polytopes in 2n dimension, and Φ is defined as:

Φ =
1

2

[
<(B 1

2 ΓB
H
2 ) =(B 1

2 ΓB
H
2 )

=(B 1
2 ΓB

H
2 ) <(B 1

2 ΓB
H
2 )

]
.

Proof: See Appendix.

we now exploit Proposition 3 in order to derive QQki
:

QQki
= 21−

Rki
n M(S0)2π

(
n+ 1

n

)n+1

det(Φki)
1
2n B−1ki

(7)
where

Φki =
1

2

[
<(B

1
2

ki(I + Qk)B
H
2

ki ) =(B
1
2

ki(I + Qk)B
H
2

ki )

=(B
1
2

ki(I + Qk)B
H
2

ki ) <(B
1
2

ki(I + Qk)B
H
2

ki )

]

According to (6), (7), we can now optimize the quantization
taking side information into account by solely optimizing the
value of Bki. When Rki is sufficiently large, the optimal Bki

can be solved as follows:

min
Bki,k∈Ai

D(i)∗

s.t. det(Bki) = 1,Bki � 0
D(i)∗ defined in (6)

(8)

The constraints on Bki matrices ensure that the optimiza-
tion is performed among quantizers with the same quantization
distortion. Note that a rigorous convexity analysis for opti-
mization problem (8) is left for [22], only an approximation
is provided here. Since we are considering the coordination
link rate Rki to be sufficiently large, use matrix inverse

approximation on (6):

D(i)∗ =
1

n
tr{I + Q−1i

+
∑
k∈Ai

(
(I + Qk)(I + Qk −QQki

)−1(I + Qk)− I
)−1}−1

' 1

n
tr{

∑
k∈Ai

(Qk + QQki
)
−1

+ Q−1i + I}−1

' 1

n
tr{

∑
k∈Ai

Q−1k + Q−1i + I−
∑
k∈Ai

Q−1k QQki
Q−1k }

−1

Therefore, the objective function is approximated as a trace of
the inverse of positive semi-definite matrix, which is a convex
optimization problem.

Note that once the optimal weight matrix B∗ki is obtained,
the codebook for optimal quantizer Q∗ki can be calculated
based on Lloyd algorithm and a training set. The optimal
weight matrices for estimation combine can be calculated
according to (5).

V. COORDINATION LINK BIT ALLOCATION PROBLEM

An interesting consequence of the above analysis is the
optimization of coordination where multiple transmitters can
exchange simultaneously CSI-related information to each other
under a global constraint on the coordination bits. The global
optimization problem over all coordination links now becomes:

min
Bki,Rki

k∈Ai,i=1,...,K

1
K

K∑
i=1

D(i)∗

s.t. det(Bki) = 1,Bki � 0
K∑
i=1

∑
k∈Ai

Rki = Rtot, Rki ∈ N+

D(i)∗ defined in (6).

Due to the integer constraints on Rki, this problem be-
comes non-convex optimization. However, conventional alter-
nating algorithms can be applied to perform the optimization
in a two-step iterative approach.

VI. NUMERICAL PERFORMANCE ANALYSIS

In this section, the per dimensional MSE for decentralized
channel estimation is evaluated for different settings using
Monte-Carlo simulations over 105 channel realizations. In all
simulations K = 2 and L = 2, M = N = 1. The channel
h ∈ C4×1 ∼ CN (0, I) and the rates on coordination link
from TX2 to TX1 and from TX1 to TX2 are denoted R21 and
R12, respectively. The parameter M(S0) is set as 929/12960
which is related to the E8 lattice since we are considering 8
real dimensions. In Fig. 4 and Fig. 5, the local CSI information
structure is characterized by Q1 = diag(0.1, 0.1, 0.9, 0.9) and
Q2 = (0.9, 0.9, 0.1, 0.1) which corresponds to an example
where TX1 has more accurate CSI about RX1 and less accurate
CSI about RX2, while TX2 has more accurate CSI about
RX2 and less accurate CSI about RX1. The diag(.) operator
represents a diagonal matrix with diagonal elements in the
parenthesis.

Fig.4 shows the per dimensional MSE for the final esti-
mation at TX1. The shaped coordination curve applies the



proposed algorithm. The unshaped coordination implement
the traditional optimal VQ and find W21,W11 accordingly
using (5). From the figure we can conclude that the shaped
coordination algorithm outperforms the unshaped coordination
algorithm, which not surprisingly shows the benefit of taking
the priori statistic information into account. The asymptoti-
cally optimal Wyner-Ziv coding curve refers to the Wyner-
Ziv quantizer for noisy source in [17]. It reveals that our
algorithm outperforms the asymptotically optimal Wyner-Ziv
coding algorithm in low coordination rate region. In fact,
in two TXs cooperation case, it is trivial to prove that the
proposed algorithm converges asymptotically to the Wyner-Ziv
bound D∞ [17] as well.

Fig. 5 exhibits the sum rate for a 2 TX cooperation system.
The rate on the coordination links satisfies R21 = R12. The
zero forcing (ZF) precoder is constructed at each TX based
on its final estimate of the network MIMO channel. We also
provide the sum rate for the case when coordination links
have infinite bandwidth. The figure shows that the proposed
shaped coordination algorithm will improve the system sum
rate beyond the unshaped coordination algorithm and asymp-
totically optimal Wyner-Ziv coding algorithm when a simple
ZF precoder is implemented. As the rate on coordination link
increases, the sum rate for all algorithms will converge to the
infinite coordination rate case.
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Fig. 4. Mean square error for the final channel estimation at TX1 as a
function of coordination link rate R21, local CSI error covariance matrices
are Q1 = diag(0.1, 0.1, 0.9, 0.9), Q2 = diag(0.9, 0.9, 0.1, 0.1).

Fig.6 considers the coordination link bit allocation prob-
lem for a 2 TX cooperation system. The total amount of
bits for coordination link is R12 + R21 = 30bits, the er-
ror covariance matrices Q1 = diag(0.1, 0.1, 0.9, 0.9),Q2 =
diag(0.5, 0.5, 0.5, 0.5). The figure reveals that the cooperation
information exchange is not necessarily symmetric, the optimal
coordination link bit allocation strategy is to let TX2 share
the cooperation information to TX1 through a R21 = 12bits
coordination link and vice versa through a R12 = 18bits
coordination link. It reveals that if one TX has a better local
CSI, it is more encouraged to share his information through a
higher rate coordination link.

VII. CONCLUSION

We study the decentralized cooperative channel estimation
for coordinated multipoint transmission networks. We derive
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a low-complexity algorithm which exploits local communica-
tions near-optimally and is robust to arbitrary feedback noise
statistics. We exhibit clear advantages over CSI acquisition and
exploitation methods used in conventional CoMP systems.

VIII. APPENDIX

Proof for Proposition 3: In order to prove this proposition,
we need the following result: for a random vector x, if an
optimal S level Euclidean distance distortion based quantizer
applied on a random vector y = B

1
2 x has the codebook

{y1, . . . ,yS} and associated partition {P1, . . . ,PS}, then the
optimal S level weighted square error distortion based quan-
tizer applied on the random vector x with weight matrix B
will have the codebook {B− 1

2 y1, . . . ,B
− 1

2 yS} and associated
partition {B− 1

2 [P1], . . . ,B
− 1

2 [PS ]},where the B−
1
2 [Pi] is de-

fined as B−
1
2 [Pi] = {x : ∃y ∈ Pi st. x = B−

1
2 y}. This result

can be easily obtained by change of variables in the integral



expression of the average quantizer distortion. Thus,

Qx = E{(x−Q(x))(x−Q(x))H}
= B−

1
2E{(y −Q(y))(y −Q(y))H}B−H

2

= B−
1
2 QyB−

H
2 ,

where y = B
1
2 x ∼ CN (0,B

1
2 ΓB

H
2 ). Let t =

[<(y)T=(y)T ]T , then t ∼ N (0,Φ) and

Φ =
1

2

[
<(B 1

2 ΓB
H
2 ) =(B 1

2 ΓB
H
2 )

=(B 1
2 ΓB

H
2 ) <(B 1

2 ΓB
H
2 )

]
.

Furthermore, it is proven in [23] that

Qt = E{(t−Q(t))(t−Q(t))T } = DtIn,

where the average distortion Dt =
1
n tr(Qt) is obtained from

[24] for large S as

Dt = S−
2
nM(S0)

(∫
ft(t)

n
n+2 dt

)n+2
n

= S−
2
nM(S0)2π

(
n+ 2

n

)n
2 +1

det(Φ)
1
n

where ft(.) is the probability density function (p.d.f) of t.
Finally, from the expression of Qt and by a real-to-complex
conversion, we get

Qy = 2S−
1
nM(S0)2π(

n+ 1

n
)n+1 det(Φ)

1
2n In

which leads to

Qx = 2S−
1
nM(S0)2π(

n+ 1

n
)n+1 det(Φ)

1
2n B−1.
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