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Cooperative Channel Estimation for Coordinated
Transmission with Limited Backhaul

Qianrui Li, Member, IEEE, David Gesbert, Fellow, IEEE and Nicolas Gresset, Member, IEEE

Abstract—Obtaining accurate global channel state information
(CSI) at multiple transmitter devices is critical to the perfor-
mance of many coordinated transmission schemes. Practical CSI
local feedback often leads to noisy and partial CSI estimates
at each transmitter. With rate-limited bi-directional backhaul,
transmitters have the opportunity to exchange few CSI-related
bits to establish global channel state information at transmitter
(CSIT). This work investigates possible strategies towards this
goal. We propose a novel decentralized algorithm that produces
minimum mean square error (MMSE)-optimal global channel
estimates at each device from combining local feedback and
information exchanged through backhauls. The method adapts
to arbitrary initial information topologies and feedback noise
statistics and can do that with a combination of closed-form
and convex approaches. Simulations for coordinated multi-point
(CoMP) transmission systems with two or three transmitters
exhibit the advantage of the proposed algorithm over conventional
CSI exchange mechanisms when the coordination backhauls are
limited.

Keywords—Decentralized estimation, Finite-capacity backhaul,
Limited feedback, Coordination, Cooperative communication.

I. INTRODUCTION

The acquisition of global CSI at multiple devices that engage
in the coordinated transmission [1] is crucial to the system
performance in many cooperative transmission techniques such
as CoMP (or network multiple-input and multiple-output,
abbreviated to network MIMO) [2], coordinated beamforming
and scheduling [3], [4], and interference alignment [5]. In
currently envisioned mobile system evolutions, two trends,
namely centralized and decentralized co-exist. In the cen-
tralized architecture, transmitter cooperation is supported by
the so-called Cloud Radio AccessNetwork (C-RAN) where
baseband processing is pushed into core networks with very
high rate optical backhaul links [6]. In contrast, when optical-
enabled C-RAN is too expensive or not suitable for the network
deployments (e.g., heterogeneous backhaul featuring wireless
links, mobile relays, flying relays, flexible on-demand low-cost
deployment, temporary hot-spot coverage), a higher degree of
decentralization is required. Hence, local information based
processing is desired so as to keep the backhaul overhead

Manuscript received February 19, 2016; revised September 20, 2016; ac-
cepted March 6, 2017. Part of this work has been presented at the International
Conference on Communication (ICCW 2015) Small Cell and 5G Networks
(SmallNets) Workshop, London, June 2015.

Q. Li and N. Gresset are with Mitsubishi Electric R&D Centre Europe,
35708 Rennes, France. (e-mail:q.li,n.gresset@fr.merce.mee.com) Q. Li was
also with Communication System Department, EURECOM during this work.

D. Gesbert is with Communication System Department, EURECOM, 06410
Biot,France. (e-mail:gesbert@eurecom.fr)

low and channel measurement’s time relevance high. Other
deployment paradigms calling for decentralized transmitter
cooperation with explicit limited information exchange con-
straints include so-called Dynamic Radio Access Network
(Dynamic RAN) [7] and inter-operator spectrum sharing.

Transmitter cooperation with limited backhaul has been
studied for a long time. In [8], they have analyzed the multi-
cell processing performance with finite-capacity backhaul us-
ing information theory tools. The work in [9], [10] also
consider the sum rate maximization of the CoMP system with
constrained backhaul. A quantization scheme for CSI sharing
under finite-capacity backhaul assumption implementing inter-
ference alignment is proposed by [11]. However, such designs
employ CSI quantizations, with no regard for the statistical
properties of the local information already existing at the
transmitter receiving the information and ignoring the potential
benefits of correlated initial channel estimates available at the
transmitters.

In this work, we recast the problem into a more general and
systematic decentralized channel estimation problem with side
information [12]. In this setup, each transmitter (TX) starts
by acquiring an initial CSI estimate from any local feedback
mechanism. Interestingly, such mechanisms can be of arbitrary
nature, encompassing scenarios such as the current long-term
evolution (LTE) release, where each base station can only
acquire CSI related to a subset of the users which are served by
that base station. Other scenarios can be also accounted such as
broadcast feedback (feedback is overheard by all TXs within
a certain distance) and hierarchical feedback designs, where
in the latter, some of the TXs (e.g. so-called ”master base
stations”) are endowed by design with a greater amount of CSI
compared with surrounding ”slave” TXs [13]. More generally,
the initial CSI structure may exhibit an arbitrary level of
accuracy as well as spatial correlation (from TX to TX). A
general and not previously addressed problem can then be
formulated as follows: Given the arbitrary initial CSI structure
and the finite information exchange capability between the
TXs, what are the reasonable strategies for cooperation (among
TXs) for the purpose of generating CSI with high-enough
quality at each TX? An interesting side question is how much
information should flow in each direction for every TX pair
when backhaul links are subject to a global bidirectional rate
constraint.

In this paper, the information exchange through capacity-
limited backhaul is modeled via a fixed rate quantization
scheme. The final CSI estimate is generated based on an
MMSE criterion, and involves a suitable combining of the
initial local CSI feedback and the backhaul-exchanged infor-
mation acquired from other TXs. A difficulty in this problem
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lies in the fact that the optimization of the information ex-
change schemes and that of the CSI combining scheme are
fundamentally coupled. Nevertheless our contribution reveals
that the two optimization steps can be undertaken jointly.

Clearly, the problem of cooperative channel estimation is
rooted in the information theoretic framework of network
vector quantization [14] and lossy source coding with side
information (i.e. Wyner-Ziv coding [15]). When more than two
TXs are involved in the cooperation, it becomes related to the
problem of multiple-source compression with side information
at the decoder [16]. The information theoretical bound [17] and
asymptotically bound-achieving quantizer design for Wyner-
Ziv coding [18]–[20] are well analyzed. However, some of
those designs only valid under specific cooperation topology
assumption and the complexity is high for real implementation.
In this paper we are interested in reasonable complexity,
practically implementable optimization algorithms for which
Wyner Ziv coding schemes can serve as useful benchmarks.

In this work, we propose a novel optimization framework,
referred as coordination shaping, which addresses the above
problems under a wide range of noise and initial CSI feedback
design. Our specific contributions include:
• A joint optimized quantization and information combin-

ing scheme allowing to produce MMSE-optimal global
CSI at all nodes of the network. The quantizer minimizes
a weighted distortion measure where the weight (quanti-
zation shaping) matrix is optimized as a function of the
distributions of CSI quality across the cooperating TXs.
The final CSI estimate at each TX linearly combines
the initial and exchanged CSI. A key finding is that
the quantization shaping matrices and linear combining
weights can be optimized jointly by a convex program.

• For the case of two TXs, our proposed algorithm can
even outperforms the Wyner-Ziv transform coding algo-
rithm [20] in the low rate region, while the performance
asymptotically achieves the Wyner-Ziv bound in the high
resolution regime.

• The proposed algorithm works for multi-transmitter co-
operation scenarios as well, hence offering a generalized
low-complexity implementation of Wyner-Ziv coding
based schemes.

• The proposed framework is exploited to find the optimal
coordination bit allocation in the case of global bidirec-
tional rate constraint.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a communication system with K TXs and L
receivers (RX). The cooperative TXs could be base stations at-
tempting to serve receiving terminals in a cooperative fashion.
There exists many cooperative transmission strategies, gener-
ally requiring the availability of some global CSI at each TX
[2]–[5]. Although the actual choice of the transmission scheme
(joint MIMO precoding, interference alignment, coordinated
scheduling, coordinated resource allocation, etc.) may affect
the CSI reconstruction problem at the TX side, such a question
is left for further work while this paper focuses instead on the
general problem of producing the best possible global CSI

at each and every TX in a non discriminatory manner. The
impact of our channel estimation framework on the overall
system performance is however evaluated in Section VIII for
a particular example of network-MIMO enabled system.

Let’s assume that each TX i,∀i = 1, . . . ,K is equipped
with M transmit antennas while each RX j,∀j = 1, . . . , L is
equipped with N receive antennas. The propagation channel
between TX i and RX j is denoted as Hji ∈ CN×M . The full
network-wide MIMO channel is H ∈ CNL×MK with:

H =

 H11 . . . H1K

... . . .
...

HL1 . . . HLK

 .
We consider frequency-flat Rayleigh fading channels. h =
vec(H) ∼ CN (0,Qh), where the vector h is the vectorized
version of full network-wide MIMO channel H and Qh is an
arbitrary multi-user channel covariance matrix.

A. Distributed CSI model
For the CSI model, we assume that each TX acquires an

initial estimate of the global channel state from an arbitrary
pilot-based, digital or analog feedback mechanism. Similar to
the CSI model used in [21], the CSI made initially available
at TX i is a noisy one. More generally, the CSI imperfection
is TX-dependent, giving rise to a distributed CSI model as
initially introduced in [22]. Let

Ĥ(i) = H + E(i), (1)

where Ĥ(i) ∈ CNL×MK is a CSI estimate for H at TX i.
E(i) ∈ CNL×MK is the estimation error seen at TX i. Hence,
the estimates at various TXs can be correlated through H.
The channel independent E(i) satisfies vec(E(i)) = e(i) ∼
CN (0,Qi). The values of Qi entries depend on the mean
channel gains for each TX-RX pair as well as the CSIR
feedback bit allocation. The errors terms seen at different TXs
are assumed independent, i.e, E{e(i) · e(j)H} = 0,∀i 6= j.
Throughout this work, the channel statistics Qh and all error
statistics Qi,∀i = 1, . . . ,K are assumed to be known at
every TX by virtue of slow statistical variations. In practical
system, those statistics can be calculated by the pilot based
channel estimation procedure. Thanks to the slow variation,
the signaling overhead and delay constraints for statistic in-
formation exchange is much easier to fulfill than those for
instantaneous channel. Therefore, we assume that statistics are
perfectly shared among TXs while sharing instantaneous CSI
is constrained by limited backhaul.

Note that the value of this CSI model lies in the fact that it is
quite general, including diverse scenarios ranging from local to
global information structures. The problem of CSI exchange
between cooperating base stations is currently an important
topic in 3GPP discussions in order to evaluate the real ben-
efits of CoMP. Although different feedback schemes such as
broadcast feedback and hierarchical feedback are not supported
yet in the current LTE/LTE-A standards, they are promising
CSI feedback technologies for 5G, where the system should
become more UE-centric, at least in some of the envisioned
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Fig. 1. Decentralized cooperative channel estimation across two TXs.

5G scenarios. Different CSI structures and feedback schemes
can be described using the aforementioned CSI model. For
example, in the conventional LTE downlink channel estimation
scenario, the channel estimation is performed in FDD mode
by each Base Station (TX) sending pilots to the users (RXs).
Each user will feedback its downlink CSI to its associated
Base Station only. This gives rise to a strongly local initial
CSI at each TX. In the scenario of broadcast feedback, a
terminal feeds back its downlink CSI to all overhearing TXs,
thus providing global CSI estimates at all TXs where it matters
most. Still, in this case too, the quality of the initial CSI
estimates remains TX-dependent due to small scale and large
scale effects on the uplink. More general various degrees of
locality for the initial CSI are completely captured in the struc-
ture of Qi. A channel component with corresponding noise
variance equal to zero in Qi will indicate perfect knowledge
of that coefficient at TX i. A channel component with smaller
corresponding noise variance than another indicates that the
local initial CSIT for this channel component is more accurate.
Finally, Qi = 0,∀i refer to the perfect centralized CSI case,
which renders backhaul-based CSI exchange superfluous.

B. Limited rate coordination model
Let’s consider the transmitter devices are equipped with rate-

limited bi-directional communication links over which they
can exchange a finite amount of CSI related information.
Note that we only allow a single shot of coordination which
consumes Rki bits of communication from TX k to TX i for all
cooperating pairs (k, i)simultaneously. The problem is now to
optimally exploit this coordination capability so as to acquire
the best possible global channel estimate at each TX.

In Fig. 1, the cooperation information exchange between
two transmitters TX i and TX k is illustrated. TX k sends to
TX i a suitably quantized version of initial CSI estimate ĥ(k),
denoted as zki. A similar operation is performed at TX i to
send zik to TX k. The quantization operation associated to
the link from TX k to TX i is defined as Qki : Cn 7→ Cki,
zki ∈ Cki, | Cki |= 2Rki where Cki is the codebook for the
quantizer Qki, n = NMKL is the length of the quantization
vector.

C. Channel estimation with limited coordination
At TX i, a reconstruction function gi(.) combines the initial

CSI ĥ(i) and the exchanged CSI zki to form a final estimate
h̃(i).

The MMSE estimation problem at TX i can be formulated
as follows:

D(i) = min
1

n
E{‖ h− h̃(i) ‖2} (2)

= min
gi,Qki

1

n
E{‖ h− gi(ĥ(i),Qki(ĥ(k))) ‖2}, (3)

where h̃(i) = gi(ĥ
(i),Qki(ĥ(k))).

Note that it is in general a difficult functional optimization
and the two functions gi(.) and Qki are intertwined. The goal
of this work is to find (i) a suitable reconstruction function
gi(.) and (ii) the optimal quantizer Qki such that at TX i,
D(i) is minimized.

III. OPTIMAL VECTOR QUANTIZATION MODEL

We now first introduce a useful model for the optimal vector
quantization (VQ) which will be exploited in the latter analysis.

Generally, optimal VQ can be derived via a Lloyd-Max
algorithm as depicted in Fig. 2. The quantization result zki and
quantization error eQki are uncorrelated but the quantization
input ĥ(k) is both dependent on eQki and zki. The covariance
matrices for ĥ(k), zki and eQki satisfy [23]

Qĥ(k) = Qzki + QQki . (4)

Since the input of the quantizer ĥ(k) is Gaussian, we obtain
an upper bound of the quantization impact by assuming that
the quantization error

eQki = ĥ(k) − zki (5)

is also Gaussian distributed as eQki ∼ CN (0,QQki) [24].
Similar to [25] and based on the Gaussian assumption for eQki ,
we can approximate the VQ procedure by a gain-plus-additive-
noise model (similar to the scalar quantizer case in [26]) as
illustrated in Fig.3.

Proposition 1. Assuming that the quantization error eQki ∼
CN (0,QQki) and is independent from the quantization result
zki, the optimal vector quantization for ĥ(k) ∼ CN (0,Qh +
Qk) is given by a gain-plus-additive-noise model:

zki = (Qh + Qk −QQki)(Qh + Qk)
−1ĥ(k) + qki, (6)

where qki and ĥ(k) are uncorrelated random vectors, qki ∼
CN (0, (Qh + Qk −QQki)(Qh + Qk)

−1QQki).

Proof: Since eQki is assumed to be independent from
zki. Knowing that ĥ(k) = eQki + zki, eQki ∼ CN (0,QQki),
h ∼ CN (0,Qh), according to the Bayesian estimator [27],

E{zki|ĥ(k)} = (Qh + Qk −QQki)(Qh + Qk)
−1ĥ(k)

Cov{zki|ĥ(k)} = (Qh + Qk −QQki)(Qh + Qk)
−1QQki ,

which concludes the proof.
This gain-plus-additive noise model with uncorrelated zki

and qki is helpful in the following derivation. In the reminder
of this work, both the design of the reconstruction functions
and optimal quantizers will be based on (6).
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Fig. 2. Quantizer model for optimal vector quantization.

  

 

 

 

 

 

 

Fig. 3. Gain-plus-additive-noise model for the optimal vector quantization
procedure.

IV. RECONSTRUCTION FUNCTION DESIGN

This section addresses the aforementioned sub-problem of
the optimal reconstruction function design in general settings
of multi-TXs cooperation (K ≥ 2). For ease of illustration, we
focus on TX i, who is cooperating with TX k, ∀k ∈ Ai, where
the set Ai contains the indices of TXs that are cooperating with
TX i.

We consider hereby the reconstruction function as a
weighted linear combination of estimates at TX i, which is
suboptimal for the functional optimization in (3) but leads to
a desired closed form optimization. It should be noticed that
in the particular case of K = 2, we have proven in Section
V-B that a weighted linear reconstruction function is actually
optimal as it achieves asymptotically the Wyner-Ziv bound.

Hence, the final estimate at TX i is modeled as:

h̃(i) =
∑
k∈Ai

Wkizki + Wiiĥ
(i), (7)

where Wki,Wii are weighting matrices. The optimal weight
combining matrices can be obtained in the following proposi-
tion.

Proposition 2. Let’s consider a multi-TXs cooperation de-
scribed in (7). Assuming that the CSI estimate at each
TX is distributed according to section II-A and the limited
rate coordination is modeled according to section II-B. Let
the quantization error covariance matrices be denoted as

QQki ,∀k ∈ Ai. The optimum per dimensional MSE for the
final estimate at TX i is:

D(i)opt =
1

n
Tr
(
Q−1h + Q−1i + Λi

)−1
, (8)

where Λi is defined as:

Λi=
∑
k∈Ai

(
(Qh+Qk)(Qh+Qk−QQk)

−1
(Qh+Qk)−Qh

)−1
.

The optimal weight combing matrices {Wopt
ki ,W

opt
ii ,∀k ∈

Ai} are obtained as:[
Wopt

ii Wopt
l1i

. . . Wopt
lCi i

]
= QhΥiΩ

−1
i , (9)

where Υi,Ωi are given below, the set Ai has cardinality
|Ai| = Ci and each element in the set is denoted by
Ai = {l1, . . . , lCi}.

Plji = Qh + Qlj −QQlji
Alji = Plji(Qh + Qlj )

−1, ∀j = 1 . . . Ci

Υi =
[

I AH
l1i

. . . AH
lCi i

]

Ωi =


Qh + Qi QhAH

l1i
. . . QhAH

lCi i

Al1iQh Pl1i . . . Al1iQhAH
lCi i

...
...

. . .
...

AlCi i
Qh AlCi i

QhAH
l1i

. . . PlCi i

 .
Proof: See Appendix A.

Remark 1. The optimal weight combining matrices
{Wopt

ki ,W
opt
ii ,∀k ∈ Ai} and D(i)opt are merely functions of

statistics Qh,Qi,Qk,QQki ,∀k ∈ Ai.
Remark 2. Consider a motivation example of two TXs coop-
eration, at TX 1, the final estimate is:

h̃(1) = W21z21 + W11ĥ
(1),

where

P21 = Qh + Q2 −QQ21

A21 = P21(Qh + Q2)
−1

[W11,W21] = Qh

[
I AH

21

] [ Qh + Q1 QhAH
21

A21Qh P21

]−1
.

The optimal per dimensional MSE is:

D(1)opt = 1
n Tr

(
Q−1h + Q−11 + Λ1

)−1
Λ1 =

(
(Qh + Q2)P

−1
21 (Qh + Q2)−Qh

)−1
.

Remark 3. The optimal per dimensional MSE and the error
covariance matrix for the final estimate is related to 3 covari-
ance terms: Qh indicates the intrinsic (true) channel statistics,
Qi refers to the initial estimation error covariance and Λi is
related to the initial estimation error and the quantization error
covariance at all TXs that cooperate with TX i. The covariance
of the final estimate is formulated as the inverse of the sum
of the 3 terms’ individual inverse.
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V. QUANTIZER DESIGN

For the optimal quantizer design, it should be noticed that
a conventional optimal VQ (optimal VQ with MSE distor-
tion) implemented by Lloyd-Max algorithm is far from being
optimal because rather than minimizing the per dimensional
MSE D(i) for the final estimate, it only guarantees that the
quantization distortion will be minimized.

Therefore, the quantizer should be properly shaped such
that the quantization procedure ensures not only the mini-
mization of quantization distortion, but also guarantees that
the quantization result, after weighted combination with other
estimates, will have the minimal per dimensional MSE D(i).
A useful interpretation of this approach is as follows. As
Qi,∀i = 1 . . .K reflect the spatial distribution of accuracy
of the initial CSI, the quantizer Qki should allocate the
quantization resource where more bits are needed, i.e., in
channel elements or directions that are well known by TX k
and least known by TX i. To this end, we choose the weighted
square error distortion

dQki(x,y) = (x− y)HBki(x− y) (10)

as the distortion measure of the quantizer Qki with the positive
definite shaping matrix Bki to be optimized.

For an important intermediate step, we can calculate QQki
in the asymptotic case as a function of Bki when the given
coordination link rate Rki is sufficiently large, i.e. in the high
resolution regime.

Proposition 3. Consider the quantization of a n dimensional
complex random vector source x ∼ CN (0,Γ), in the high
resolution regime where the number of quantization levels S
is large, the optimal VQ using weighted MSE distortion with
shaping matrix B will have a quantization error covariance
matrix Qx as:

Qx = Q
(S)
0 (Γ) det(B)

1
nB−1,

where

Q
(S)
0 (Γ) = S−

1
nM2n2π

(
n+ 1

n

)n+1

det(Γ)
1
n In

is the quantization error covariance matrix for x in the high
resolution regime when conventional optimal VQ is applied
[28]. M2n is a constant related to 2n.

Proof: See Appendix B.
Remark 4. The aforementioned quantization error covariance
matrix expression encompasses the quantization error covari-
ance matrix for conventional optimal VQ by taking B = In.
It can be easily verified that by imposing a constraint that
det(B) = 1, for all values of matrix B, the corresponding
quantizers will have the same quantization distortion.
Remark 5. For the constant M2n, a look-up table for 2n =
1, . . . , 10 in [29] can be used. when n is larger, we can
approximate M2n = 1

2πe .
We now exploit Proposition 3 in order to derive QQki :

QQki = Q
(S)
0 (Γ) det(Bki)

1
nB−1ki , (11)

where
S = 2Rki

Γ = Qh + Qk.

A. Shaping matrix optimization
Based on the reconstruction function in Section IV and using

equations (8), (11), we can now proceed with the task of jointly
optimizing the reconstruction function and the quantizer by
solely optimizing the value of Bki.

min
Bki,k∈Ai

D(i)opt

s.t. det(Bki) = 1,Bki � 0
D(i)opt defined in (8).

(12)

As mentioned in Remark 4, the constraints on Bki matrices
ensure that all feasible quantizers have the same quantization
distortion, the optimization will find Bki,∀k ∈ Ai that
minimize the per dimensional MSE for the final estimate.
Proposition 4. The objective function in problem (12) is
convex. In high resolution regime, problem (12) can be ap-
proximated by the following convex optimization problem:

min
Bki,k∈Ai

1
nTr

(∑
k∈Ai

(Q−1k −Q−1k QQkiQ
−1
k )+Q−1i +Q−1h

)−1
s.t. det(Bki) ≥ 1,Bki � 0

QQki defined in (11).
(13)

Proof: See Appendix C.
The reason for solving optimization problem (13) rather

than solving directly the original optimization problem (12) is
that the former can be easily transformed into a semi-definite
quadratic linear programming. It can be solved efficiently by
optimization toolbox such as CVX.

B. Asymptotic result for two TXs cooperation
Interestingly, the asymptotic performance of the proposed

algorithm can be characterized in relation to known informa-
tion theoretic bound.
Proposition 5. For a two TXs cooperation scenario of TX 1
and TX 2 as described in section II-C, at TX 1 the proposed
coordination shaping algorithm can achieve asymptotically in
high resolution regime the Wyner-Ziv bound given by

D(1)opt
∞ = D(1)NWZ

∞ =
1

n
Tr
(
Q−11 + Q−12 + Q−1h

)−1
.

Proof: the asymptotical per dimension MSE for proposed
algorithm is:

D(1)opt
∞ = lim

R21→∞
D(1)opt

=
1

n
Tr
(
Q−11 + Q−12 + Q−1h

)−1
.

It is well known that the information theoretic bound of the
per dimension MSE for two TXs cooperation can be achieved
using a Wyner-Ziv quantizer and the asymptotic distortion is
[20]:

D(1)NWZ
∞ =

1

n
Tr(EY Z Var [X|Y, Z]),



IEEE TRANSACTIONS ON WIRELESS COMMUNICATION, VOL., NO., MM 2017 6

 

Shaping matrix 

optimization 

Quantizer 

design 

Training set 

Codebook 

Reconstruct 

function design 

 !, " ,  # $"#  

%#  

 &"#  

 '"#
  

Fig. 4. The procedure of optimal shaped coordination design.

where X, Y, Z correspond to the source data, side information
and noisy source (i.e, perfect CSI h, initial CSI ĥ(1) and
initial CSI at it’s cooperation TX ĥ(2) as in our case). Since
Gaussianity is assumed for the perfect CSI and initial CSI,
D

(1)NWZ
∞ can be calculated as:

D(1)NWZ
∞

=
1

n
Tr

(
Qh−[ Qh Qh ]

[
Qh+Q1 Qh

Qh Qh+Q2

]−1[
Qh

Qh

])
=
1

n
Tr
(
T1 −T1(T1 + Q2)

−1T1

)
=
1

n
Tr
(
T−11 + Q−12

)−1
=
1

n
Tr
(
Q−11 + Q−12 + Q−1h

)−1
=D(1)opt

∞ ,

where T1 = Qh(Qh + Q1)
−1Q1.

Thus, it reveals that in the case of two TXs cooperation,
the proposed coordination shaping algorithm is asymptotically
optimal.

C. The shaped coordination design
The shaped coordination design is depicted in Fig. 4. During

the quantizer design, each TX will first optimize the shaping
matrices based on channel statistics and the number of bits
for information exchange on each backhaul. Once the optimal
shaping matrix is obtained, the codebook for the optimal
quantizer can be calculated based on the Lloyd algorithm and
a training set. The optimal weight matrices for the reconstruct
function can be obtained according to (9). It should be noticed
that this shaped coordination quantizer and the reconstruction
function design is semi-static. The weight matrices for the
estimates combination and the quantizers will be updated only
when the channel statistics or the backhaul resources allocation
have been changed.

After the shaped coordination design, the optimal instanta-
neous final channel estimate at each TX can be attained based
on the shaped coordination procedure in Fig. 1.

VI. COMPLEXITY ANALYSIS FOR SHAPED COORDINATION

In this section, we will compare the complexity of the
proposed shaped coordination algorithm with state of the art

Wyner-Ziv coding implementations in two aspects. In the first
part, we will compare the complexity of the quantizer and the
reconstruction function design for the proposed algorithm with
state of the art design. In the second part, we will compare the
complexity to obtain final channel estimate using the proposed
shaped coordination algorithm with state of the art Wyner-Ziv
coding implementation.

A. Complexity analysis for quantizer and reconstruct function
design

As described in Fig. 4, the quantizer design for the proposed
algorithm involves a semi-definite program to find the optimal
shaping matrix and a lloyd max procedure to acquire the
codeword for the quantizer.

Solving a semi-definite program using the ellipsoid method
requires an overall complexity of O(max(m,n2)n6 log( 1ε ))
[30], where n is the dimension of optimization matrix, m is
the number of inequality constraints, ε is the accuracy required
for the iteration process. In a two TX cooperation case, the
overall complexity to find an ε-optimal shaping matrix is
O(n8 log( 1ε )) where n is the dimension of the shaping matrix.
Regarding to the lloyd max algorithm, the complexity is often
given as O(`SCP ), where S is the size of the training set,
C = 2R is the number of clusters, P is the number of iteration
needed until convergence, ` = 2n is the dimension of the
training vector. In practice, the convergence of iteration is fast
and the overall algorithm has polynomial smoothed running
time [31]. Therefore, the overall complexity of the proposed
shaped coordination design is O(n8 log( 1ε ) + 2R+1nSP ). In
real implementation, the complexity mainly comes from lloyd
max codebook design.

For the state of the art design of noisy source Wyner-Ziv
coding problem, possible implementation can be nested lattice
quantizer [19] or Wyner-Ziv transform coding [20]. For the
optimal nested lattice design, it involves the design of lattices
with the densest packing (i.e., the best channel code) and the
thinnest covering (i.e., the best source coding) [19]. In addition,
in order to optimize the nesting scheme, the densest packing
lattice should have Voronoi cell boundaries not intersecting
with the thinnest covering lattice (this property is referred as
clean in [32]). It should be guaranteed that the two lattices
are geometrically similar and the nesting ratio should be 2R

[19]. For certain small dimensions, the thinnest covering lattice
is already known [29] and it is still an open problem for
arbitrary dimensions. However, as the lloyd max algorithm is
reported to converge to the centroidal Voronoi tessellation [33],
the complexity of finding the thinnest covering is at least as
hard as the lloyd max algorithm. Regarding to the problem
of finding a clean and similar densest packing lattice which
also satisfies the nesting ratio 2R, to the best of the authors’
knowledge, it’s a difficult open problem and only partial result
is given in [32]. Therefore, the complexity of nested quantizer
design is higher than the proposed shaped coordination design.

Consider the Wyner-Ziv transform coding design, the overall
system requires 2n parallel path of scalar quantization followed
by ideal Slepian-Wolf coding and decoding [20]. The Slepian-
Wolf coding and decoding can be implemented using a rate
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compatible punctured turbo code [34] or polar code. The
quantizer design using lloyd max algorithm for each path
has a complexity of O(2

R
2nSP ′), where S is the size of the

training set, 2
R
2n is the number of clusters for each path,

P ′ is the number of iteration needed until convergence. The
overall complexity for the 2n path is O(n2

R
2n+1SP ′). In real

implementation, the running time complexity of the lloyd max
codebook design is dominated by the cardinality S of the
training set. Therefore, the overall complexity for the proposed
shaped coordination design is comparable to the Wyner-Ziv
transform coding design.

B. Complexity analysis for obtaining final CSI estimate
Fig. 1 has introduced the procedure to obtain final CSI

estimate using shaped coordination algorithm. It can be con-
cluded that there will be 1 vector quantization and 1 weighted
combination so as to get the final CSI estimate for 2 TXs
cooperation. By using fast quantization algorithm such as
vector to scalar mapping elimination [35], the complexity of
the vector quantization is O(10n+R+6nNM−3), where NM
is the average number of affected code vectors. The weighted
combination has a complexity of O(8n2 +2n). Therefore, the
overall complexity is O(8n2 + 12n+R+ 6nNM − 3).

To obtain the final CSI estimate using Wyner-Ziv transform
coding, the complexity for the scalar quantization in each path
is O( R2n ) when a binary search algorithm is applied. The com-
plexity for the rate compatible punctured turbo code is hard to
obtain. However, For an equivalent polar code implementation
of the ideal Slepian-Wolf coding and decoding, the encoding
or decoding complexity is well known as O(N logN) where
N = R

2n . Therefore, the overall complexity for Wyner-Ziv
transform coding is O(8n2 + 2n + R + 2R log R

2n ), where
the 8n2 + 2n term comes from the pre-processing and post-
processing of orthogonal transformation and the final combi-
nation step.

It is therefore evident that in high resolution regime, the
proposed algorithm has a complexity of the order O(R) while
the Wyner-Ziv transform coding algorithm has a complexity of
O(R logR), which is higher than the algorithm we proposed.

VII. COORDINATION LINK BIT ALLOCATION

An interesting consequence of the above analysis is the
optimization of coordination where multiple transmitters can
exchange simultaneously CSI-related information to each other
under a global constraint on the coordination bits. The opti-
mization problem over all coordination links now becomes:

min
Bki,Rki

k∈Ai,i=1,...,K

1
K

K∑
i=1

D(i)opt

s.t. det(Bki) = 1,Bki � 0
K∑
i=1

∑
k∈Ai

Rki = Rtot, Rki ∈ N+

D(i)opt defined in (8).

(14)

Due to the integer constraints on Rki, this problem becomes
a non-convex optimization. However, conventional alternat-
ing algorithms can be applied to perform the optimization.

In this two-step alternative optimization, either the capacity
constraints on the backhaul Rki or the shaping matrices Bki

will be fixed while optimizing the other.
The optimization for Rki with fixed Bki is an integer

programming problem and the optimization for Bki with
fixed Rki is a convex optimization problem. Hence, many
conventional algorithms can be applied in both steps. It should
be noted that the alternating algorithm does not guarantee the
global optimum. Based on the initial point, it might converge
to a local optimal point as well.

VIII. NUMERICAL PERFORMANCE ANALYSIS

In this section, a network MIMO transmission [2] setup is
considered. Unless otherwise indicated, the default simulation
settings are K = 2 and L = 2, M = N = 1. An
isotropic channel h ∈ C4×1 ∼ CN (0, I4) is considered.
The rates on coordination link from TX 2 to TX 1 and
from TX 1 to TX 2 are denoted R21 and R12, respectively.
Each TX constructs a ZF precoder based on its final chan-
nel estimate. The power control at each TX is 20dB. The
per dimensional MSE for decentralized channel estimation is
evaluated for different settings using Monte-Carlo simulations
over 105 channel realizations. Since n = MNKL = 4,
the parameter M2n is chosen to be 929/12960 which is
related to the E8 lattice [29]. In Fig. 5, the CSI information
structure is characterized by Q1 = diag(0.1, 0.9, 0.1, 0.9) and
Q2 = diag(0.9, 0.1, 0.9, 0.1) which corresponds to a broadcast
feedback example where TX 1 has more accurate CSI on RX 1
and less accurate CSI on RX 2, and vice versa for TX 2. The
diag(.) operator represents a diagonal matrix with diagonal
elements in the parenthesis.

The first sub-figure in Fig.5 shows the per dimensional
MSE for the final estimation at TX 1. The Wyner-Ziv bound
is the information theoretic bound. The shaped coordination
curve applies the proposed algorithm. The unshaped coor-
dination implements the traditional optimal VQ and finds
W21,W11 accordingly using (9). From the figure we can
conclude that the shaped coordination algorithm outperforms
the unshaped coordination algorithm, which not surprisingly
shows the benefit of taking the priori statistic information
into account. The WZ transform coding curve refers to the
asymptotic optimal Wyner-Ziv transform coding for noisy
source in [20]. It reveals that our algorithm outperforms the
Wyner-Ziv transform coding algorithm in low coordination rate
region and converges asymptotically to the Wyner-Ziv bound
D∞ as expected. The second sub-figure of Fig.5 exhibits the
sum rate for a 2 TX cooperation system. The rate on the
coordination links satisfies R21 = R12. We also provide the
sum rate for the case when coordination links have infinite
bandwidth as a baseline. The figure shows that the proposed
shaped coordination algorithm will improve the system sum
rate beyond the unshaped coordination algorithm and WZ
transform coding algorithm when a simple ZF precoder is
implemented. As the rate on coordination link increases, the
sum rate for all algorithms will converge to the infinite
coordination rate case.

In Fig.6, the per dimensional MSE for final CSI estimate at
TX 1 is plotted as a function of backhaul rate for a cooperation
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Fig. 5. MSE for the final channel estimate at TX 1 and sum rate for the 2
TX cooperation system vs. coordination link rate R21, CSI error covariance
matrices are Q1 = diag(0.1, 0.9, 0.1, 0.9), Q2 = diag(0.9, 0.1, 0.9, 0.1),
each TX implements a ZF precoder based on its final channel estimation, SNR
is 20dB per TX.

scenario with K = 2 TXs and L = 2 RXs. Each RX has single
antenna (N = 1) and each TX has 2 transmit antennas (M =
2). we simulate with a realistic cellular setting. Let h` denote
the user channel for RX `, assuming that h` ∼ CN (0,Θ`).
The correlation matrix Θ` is a block diagonal matrix that reads
Θ` = blockdiag(Θ`,1, . . . ,Θ`,k). The correlation matrix Θ`,k

between the `th RX and the kth TX denotes [21]

[Θ`,k]i,j=γd
−ε
`,k ·

1

θ`,max−θ`,min

∫ θ`,max

θ`,min

ei
2π
λ ·(j−i)das·cos θdθ.

(15)

The γd−ε`,k part indicates the pathloss with ε being the pathloss
component. d`,k the distance between RX ` and TX k and γ
a coefficient to further adjust the model. The rest part models
the Uniform Linear Array (ULA) assuming a diffuse two-
dimensional field of isotropic scatters around the receivers.
The waves impinge the receiver ` uniformly at an azimuth
angle θ ranging from θ`,min to θ`,max. The angle spread is
ϕ = θ`,max − θ`,min, the antennas spacing is das and λ
is the signal wavelength. Each TX is located in the center
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Fig. 6. MSE for the final channel estimation at TX 1 as a function of
coordination link rate R21 for a 2 TX 2 RX cellular simulation.

of a hexagon cell with cell radius rc, each cell has only
1 RX and the RX is random and uniformly located in the
cell with the distance to the TX larger than d0. Let e

(k)
`

denote the estimate error seen at TX k for RX ` user channel,
e
(k)
` ∼ CN (0, 2−r

FB
k` · σ2

EI). The parameter σ2
E =

σ2
pilot

Npilot·ppilot

is based on the Cramer-Rao lower bound [27], yielding the
absolute mean square error of a channel estimation based on
Npilot pilots of power ppilot subjects to noise σ2

pilot [36]. The
term 2−r

FB
k` is based on rate distortion theory where rFB

k` is the
average rate that per channel coefficient is instantaneously fed
back from RX ` to TX k.

All simulation parameters are listed in the Table I. This
setting corresponds to a scenario of FDD downlink channel
estimation and each RX will feedback to both TXs. However,
RX feeds back the CSIR to TX in the cell with a higher
feedback rate than to the TX in the other cell.

TABLE I. SIMULATION PARAMETERS FOR A CELLULAR SETTING.

rc γ ε d0 f das ϕ σ2
E rFB

k`

1km 109 3 0.1km 2GHz λ
2

π
6 1

5(` = k)
1(` 6= k)

From Fig. 6, we can conclude that the proposed shaped
coordination algorithm outperforms the Wyner-Ziv transform
coding algorithm in low coordination rate region. The Wyner-
Ziv transform coding algorithm is even worse than the un-
shaped coordination probably because in this setting, using an
additive separable linear estimator to replace the non-additive
separable EY Z Var [X|Y,Z] is highly suboptimal [20].

In Fig.7 we simulate a 3 TX cooperation system. The rate
constraint on coordination link from TX 2 to TX 1 and TX 3
to TX 1 satisfies R21 = R31. In this simulation, the parameters



IEEE TRANSACTIONS ON WIRELESS COMMUNICATION, VOL., NO., MM 2017 9

Rate R21,R31(R21=R31) on coordination links (bit/coordination)

4 5 6 7 8 9 10

P
e
r 

d
im

e
n
s
io

n
a
l 
M

S
E

 a
t 

T
X

1
 f

o
r 

c
h
a
n
n
e
l 
e
s
ti
m

a
te

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Unshaped coordination

Shaped coordination

Fig. 7. 3 TX cooperation: MSE for the final channel estimate at TX 1 as a
function of coordination link rate R21(= R31).

Rate R21 on coordination link (bit/coordination)

4 6 8 10 12 14 16 18 20

P
e
r 

d
im

e
n
s
io

n
a
l 
a
v
e
ra

g
e
 M

S
E

 f
o
r 

th
e
 f

in
a
l 
c
h
a
n
n
e
l 
e
s
ti
m

a
te

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

case 1

case 2

case 3

R21=8bits/coordination

R12=22bits/coordination

R21=R12=15bits/coordination

R21=12bits/coordination

R12=18bits/coordination

Fig. 8. Per dimensional average MSE for the final channel estimation at
TX 1, TX 2 when sum bit for coordination link Rtot = R21+R12 = 30bits.
Case 1: Q1 = diag(0.1, 0.1, 0.9, 0.9), Q2 = diag(0.5, 0.5, 0.5, 0.5), case
2: Q1 = diag(0.4, 0.2, 0.3, 0.1), Q2 = diag(0.7, 0.8, 0.6, 0.9), case 3:
Q1 = diag(0.5, 0.5, 0.5, 0.5), Q2 = diag(0.5, 0.5, 0.5, 0.5).

are denoted below:

K=L=3,M=N=1, 2n=18,M2n=
1

2πe
,h∼CN (0, I9)

Q1 = diag(0.1, 0.5, 0.5, 1, 1, 1, 1, 1, 1)

Q2 = diag(1, 1, 1, 0.5, 0.1, 0.5, 1, 1, 1)

Q3 = diag(1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.1)

This simulation setting corresponds to the following case: each
TX i has more accurate CSI for the user channel Hii, it also
has some coarse CSI for the user channel Hji,∀j 6= i and
almost no CSI for the channel between the other TXs and the
RXs. Fig.7 clearly shows the performance enhancement of the
coordination shaping algorithm over the conventional unshaped
coordination algorithm in a multiple TX cooperation scenario.

Fig.8 considers the coordination link bit allocation problem

for a 2 TX cooperation system. The total amount of bits for
coordination link is R12 + R21 = 30bits/coordination. The
figure reveals that the cooperation information exchange is
not necessarily symmetric. In case 3, the two TXs exchange
information with equal rate R12 = R21 = 15bits/coordination
because the accuracy of CSI at both end is the same. However,
in case 2, the optimal coordination link bit allocation strategy is
to let TX 1 share the cooperation information to TX 2 through
a R21 = 8bits/coordination backhaul and vice versa through a
backhaul of R12 = 22bits/coordination. It’s intuitive because
for every channel coefficient, TX 1 has a more accurate initial
CSI than TX 2. It reveals that if one TX has a better CSI, it is
more encouraged to share his information with its cooperating
end through the coordination link.

IX. CONCLUSION

We study decentralized cooperative channel estimation for
use in transmitter coordinated systems under strict backhaul
information exchange rate limitations. We relate this prob-
lem to the information theoretic setup of distributed source
coding with side information. We derive a practical algorithm
which near-optimally combines finite-rate backhaul exchange
together with local pre-existing CSI at the transmitters. The
scheme is robust with respect to arbitrary feedback noise
statistics and allows to jointly optimize the quantization step
used over the rate-limited backhaul links together with the
weights using to combine local CSI with exchanged CSI.

APPENDIX A
PROOF OF PROPOSITION 2

Adopt the notation in Proposition 2, according to (2), (6)
and (7), the per dimensional MSE can be expressed as:

D(i) =
1

n
E{‖ h− h̃(i) ‖2}

=
1

n
Tr

(
(
∑
k∈Ai

WkiAki+Wii−I)Qh(
∑
k∈Ai

WkiAki+Wii−I)H

)

+
1

n
Tr

(∑
k∈Ai

Wki

(
AkiQkA

H
ki+AkiQQki

)
WH

ki+WiiQiW
H
ii

)
.

Take the partial derivatives and set them to zero:

∂D(i)

∂W∗
ii

= 0

∂D(i)

∂W∗
ki

= 0, ∀k ∈ Ai,

which leads to:

Wii (Qh + Qi) =

(
I−

∑
k∈Ai

WkiAki

)
Qh

Wki

(
AkiQhAH

ki + AkiQkA
H
ki + AkiQQki

)
=

I−
∑
t∈Ai
t 6=k

WtiAti −Wii

QhAH
ki.
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Solve the above equation system, the optimal weight combing
matrices {Wopt

ki ,W
opt
ii , k ∈ Ai} can be derived as:[

Wopt
ii Wopt

l1i
. . . Wopt

lCi i

]
= QhΥiΩ

−1
i .

Let

W =
[

Wopt
ii Wopt

l1i
. . . Wopt

lCi i

]

Θi =


Qi 0 . . . 0
0 Pl1i−Al1iQhA

H
l1i

. . . 0
...

...
. . .

...
0 0 . . . PlCi i

−AlCi i
QhA

H
lCi i

 ,
then

Ωi = Θi + ΥH
i QhΥi.

Since

W = QhΥiΩ
−1
i ,

the optimum per dimensional MSE satisfies

D(i)opt =
1

n
Tr
(
(WΥH

i − I)Qh(WΥH
i − I)H + WΘiW

H
)

=
1

n
Tr
(
Qh −QhΥiΩ

−1
i ΥH

i Qh

)
(a)
=

1

n
Tr
(
Q−1h + ΥiΘ

−1
i ΥH

i

)−1
=

1

n
Tr

(
Q−1h +

∑
k∈Ai

AH
ki(Pki−AkiQhA

H
ki)
−1Aki+Q−1i

)−1
=

1

n
Tr
(
Q−1h + Q−1i + Λi

)−1
,

where (a) follows from the Woodbury identity

(A+CBCH)−1=A−1−A−1C(B−1+CHA−1C)−1CHA−1.

This concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 3

In order to prove this proposition, we need the following
lemma:
Lemma 1. for a random vector x, if an optimal S levels
Euclidean distance distortion based quantizer applied on a
random vector y = B

1
2 x has the codebook {y1, . . . ,yS}

and associated partition {P1, . . . ,PS}, then the optimal S
level weighted square error distortion based quantizer applied
on the random vector x with shaping matrix B will have
the codebook {B− 1

2 y1, . . . ,B
− 1

2 yS} and associated partition
{B− 1

2 [P1], . . . ,B
− 1

2 [PS ]},where the B−
1
2 [Pi] is defined as

B−
1
2 [Pi] = {x : ∃y ∈ Pi s.t. x = B−

1
2 y}.

Proof: Consider the distortion associated with the optimal
codebook and partition:

Dy =

S∑
j=1

fy(yj)
∫

y∈Pj

(y− yj)
H(y− yj)dy.

Dx =

S∑
j=1

fx(xj)
∫

x∈Mj

(x− xj)HB(x− xj)dx

= det(B−1)
S∑
j=1

fx(xj)
∫

u∈B
1
2 [Mj ]

(u− B
1
2 xj)H(u− B

1
2 xj)du,

where {x1, . . . , xS} and {M1, . . . ,MS} denote the optimal
codebook and partition for the quantizing x. Let B

1
2 xj = yj

and B
1
2 [Mj ] = Pj , since

fy(yj) = fx(xj) det(B−1),
by change of variable in the integral, we can get Dy = Dx.

Thus, according to Lemma 1,

Qx = E{(x−Q(x))(x−Q(x))H}
= B−

1
2E{(y −Q(y))(y −Q(y))H}B−H2

= B−
1
2 QyB−

H
2 ,

where y = B
1
2 x ∼ CN (0,B

1
2 ΓB

H
2 ). Let t =

[<(y)T=(y)T ]T , then t ∼ N (0,Φ) and

Φ =
1

2

[
<(B 1

2 ΓB
H
2 ) =(B 1

2 ΓB
H
2 )

=(B 1
2 ΓB

H
2 ) <(B 1

2 ΓB
H
2 )

]
.

Furthermore, it is proven in [37] that

Qt = E{(t−Q(t))(t−Q(t))T } = DtIn,

where the average distortion Dt =
1
n Tr(Qt) is obtained from

[28] for large S as

Dt = S−
2
nMn

(∫
ft(t)

n
n+2 dt

)n+2
n

= S−
2
nMn2π

(
n+ 2

n

)n
2 +1

det(Φ)
1
n ,

where ft(.) is the probability density function (p.d.f) of t.
Finally, from the expression of Qt and by a real-to-complex
conversion, we get

Qy = 2S−
1
nM2n2π(

n+ 1

n
)n+1 det(Φ)

1
2n In,

which leads to

Qx = 2S−
1
nM2n2π(

n+ 1

n
)n+1 det(Φ)

1
2nB−1

= S−
1
nM2n2π(

n+ 1

n
)n+1 det(B)

1
n det(Γ)

1
nB−1

= Q
(S)
0 (Γ) det(B)

1
nB−1,

where

Q
(S)
0 (Γ) = S−

1
nM2n2π

(
n+ 1

n

)n+1

det(Γ)
1
n In.
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APPENDIX C
PROOF OF PROPOSITION 4

We first give some necessary lemmas:
Lemma 2. [38, Lemma 2.5] The matrix function h : X 7→
−X−1 is both a strictly matrix concave function and a matrix
monotone increasing function.
Lemma 3. If X is a positive semi-definite hermitian matrix,
then matrix function h : X 7→ Tr(X−1) is convex and matrix
monotone decreasing.

Proof: Consider g(t) = h(Z + tV), where Z is positive
semi-definite hermitian matrix, V is hermitian matrix, since

d2

dt2
g(t)|t=0 = Tr

(
2(Z−1V)Z−1(Z−1V)−1

)
≥ 0,

therefore f(X) is convex.
For X � Y � 0, according to Lemma 2,

Y−1 � X−1 � 0

h(X)− h(Y) = Tr(X−1 −Y−1) ≤ 0,

therefore, the function is matrix monotone decreasing.
Adopt the notations in Proposition 2, we will prove the

convexity of problem (12). Since

det(Bki) = 1,

according to (11),

QQki = Q
(S)
0 (Γ)B−1ki .

Let

f = Q−1h + Q−1i + Λi,

with Λi defined in Corollary 2. Let’s consider the convexity
of composite function: if a function h is concave and matrix
monotone increasing, a function g is a concave function, then
the composite function h ◦ g is concave. According to Lemma
2,

h = −X−1,

is matrix concave and matrix monotone increasing for X.
According to Lemma 2,

g = A−B−1ki ,

with constant matrix A is concave for Bki. Therefore the
functions

Λi = h ◦ g
f = Q−1h + Q−1i + Λi

are concave for Bki.
Consider the convexity of composite function: if a function

h is convex and matrix monotone decreasing, a function g is
concave function, then the composite function h◦ g is convex.
According to Lemma 3,

h = Tr
(
X−1

)

is convex and matrix monotone decreasing for X, since

g = Q−1h + Q−1i + Λi

is concave, therefore we can conclude that

D(i)opt = h ◦ g

is convex for Bki.
When the coordination link rate Rki is sufficiently large,

use twice matrix inverse approximation:

D(i)opt =
1

n
Tr
(
Q−1h + Q−1i + Λi

)−1
(a)
' 1

n
Tr

(∑
k∈Ai

(Qk + QQki)
−1

+ Q−1i + Q−1h

)−1
(b)
' 1

n
Tr

(∑
k∈Ai

(Q−1k −Q−1k QQkiQ
−1
k )+Q−1i +Q−1h

)−1
,

where (a) and (b) follows from the matrix inverse first order
approximation: if Xn → 0 when n→∞, then

(A + X)−1 ' A−1 −A−1XA−1.

Similar to the previous analysis, according to convexity for
composite matrix function, applying Lemma 3 and Lemma
2, we can conclude the above approximation for D(i)opt is
convex.

If we relax the constraint det(Bki) = 1 to det(Bki) ≥
1, the feasible set for Bki is therefore a convex set and the
optimization for this relaxed problem is minimizing a convex
function over a convex set, which is a convex optimization
problem and the optimal Bki should attain at the boundary
det(Bki) = 1.This concludes the proof.
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