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Abstract—We derive expectation-maximization (EM) based
iterative algorithms to estimate the impulse response of multipath
channel with coded OFDM system. We compare two ways
for choosing EM complete data: a complete data built from
observations and transmitted symbols (CL-EM) and complete
data chosen by decomposing noise and observation components
(NCD-EM). We also derive the Cramér-Rao lower bound (CRB)
for coded OFDM transmission. Simulation results show that CL-
EM has better convergence than NCD-EM and achieves the CRB.

I. INTRODUCTION

Coded orthogonal frequency division multiplex (OFDM)

has been chosen as the air interface for recent cellular and

wireless LAN systems thanks to its good performance, its

flexibility and its low implementation complexity. A number

of channel estimation methods have been proposed for OFDM.

When pilot symbols are available on some sub-carriers, initial

estimates are easily obtained and can be improved through

frequency- and time-domain interpolation [1] or according to

the minimum mean square error (MMSE) criterion [2]. Blind

channel estimation methods, not relying on the presence of

pilot symbols, have also been proposed. For instance, they

take benefit from the cyclostationarity of the OFDM signal [3].

However, all these algorithms have their limitations: lower

accuracy, lower spectrum efficiency due to pilot overhead or

higher sensitivity to Doppler effect in case of blind estimation.

As hardware capacity is continuously increasing, it becomes

more feasible to implement iterative receivers allowing for

improvement of the physical layer functions. Among them,

channel estimation especially benefits from data aided methods

requiring a feedback from the channel decoder. The iterative

expectation-maximization (EM) [4] estimation algorithm is

particularly well suited for OFDM systems with low pilot

overhead. Instead of computing the maximum likelihood chan-

nel estimate from the observations only, it makes use of the

so-called complete data Θ, which are not observed directly

but only through incomplete data. Θ is a random variable.

Thus, the log-likelihood can be averaged over Θ knowing

the incomplete data and a current channel estimate. A new

channel estimate is then obtained by maximizing the average

log-likelihood, which results in the EM iterative structure. The

likelihood increases along EM iterations [4]. A classic way

(CL-EM) to choose the complete data is Θ = (X,Y), where

X is the transmitted signal and Y the observation [5]. In [6]

and [7], for uncoded OFDM, complete data is obtained by

decomposing the noise and observation components (NCD-

EM). In [8], NCD-EM is applied to a coded single-carrier

system.

In this paper, we compare CL-EM and NCD-EM for a

coded OFDM system in terms of mean square error (MSE) and

bit error rate (BER) performances. In addition, we derive the

Cramér-Rao lower bound for this coded OFDM, as a reference

for MSE performance.

II. SYSTEM DESCRIPTION

We consider a coded OFDM signal transmitted over a

single-input single-output (SISO) frequency-selective channel

as shown in Fig. 1. An information binary sequence S is en-

coded into a coded sequence C. The encoded bits are then in-

terleaved by a pseudo-random interleaver and modulated. After

pilot insertion, the obtained sequence X = [X0, · · · , XN−1]
T

is processed by an inverse fast Fourier transform (IFFT), which

provides the time-domain sequence:

x = [x0, · · · , xN−1]
T = DHX (1)

where D is the normalized N×N FFT matrix. After insertion

of a cyclic prefix (CP) with length LCP , the transmitted

OFDM symbol is x
′

= [xN−LCP
, · · · , xN−1, xT ]T . The

received sequence is

y
′

k =

L−1
∑

l=0

hlx
′

k−l + nk, 0 ≤ k ≤ N + LCP − 1, (2)

where L is the channel length, h = [h0, · · · , hL−1]
T

is the

channel impulse response, and nk is a complex Gaussian noise

with zero mean and variance 2σ2. After CP removal, the

received time domain sequence y = [y0, · · · , yN−1]
T

is

processed by FFT. The received sequence in the frequency

domain is

Y = [Y0, · · · , YN−1]
T

= Dy. (3)

We assume that the impulse response is constant over one

OFDM symbol. Thanks to OFDM modulation,

Y = diag (H)X + N (4)

where N = [N0, · · · , NN−1]
T

= Dn has the same distribu-

tion as n, and H = [H0, · · · , HN−1]
T

represents the channel

frequency response:

H = Ωh, (5)
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Fig. 1. Coded OFDM system model with proposed EM based channel estimator. The initial estimate is obtained from pilot symbols only, whereas the
estimates in following iterations are obtained from both pilot and data symbols.

where the N × L matrix Ω is built from the L first columns

of
√

ND. In (4), diag (H) represents a diagonal matrix with

Hk as its (k, k) entry.

An initial channel estimate is obtained from pilots in-

cluded in sequence Y. Data symbols are demodulated, and

the obtained soft information on coded bits is de-interleaved

into sequence Ĉ, which is processed by the decoder. After

decoding, the a posteriori probabilities are fed back to the EM-

based estimator which produces a new channel estimate for

next demodulation and decoding. Thus, the soft information

and the channel estimate will be improved along iterations.

III. EM-BASED CHANNEL ESTIMATION

A. Notations for the EM Algorithm

The EM algorithm provides a recursive solution to ML

estimation [4] [9] and it performs a two-step procedure:

1) E-step: compute the auxiliary function

Q
(

h|h(i)
)

= EΘ

[

log p (Θ |h) |Y,h(i)
]

;

2) M-step: update the parameters

h(i+1) = arg max
h

Q
(

h|h(i)
)

,

where Θ is called the complete data. The way to choose the

complete data is one of the issues to be solved. A classic

way is to choose Θ = (X,Y). We call it classic EM (CL-

EM). For superimposed signals, it has been shown in [10]

that the complete data can be chosen by decomposing the

noise components into independent noise processes. We call

it noise component decomposition EM (NCD-EM). NCD-

EM has been utilized in some applications, such as uncoded

OFDM with single and multiple transmit antennas ( [7] and [6]

respectively) and coded single-carrier transmission on fading

channel with uncorrelated and correlated paths ( [8] and [11]

respectively).

B. Classic EM Channel Estimation

Here, we choose the complete data with the classic

method [5]:

Complete data Θ = (X,Y).

X is called the missing data and Y is called the incomplete

data. So, the E-step can be re-written as

Q
(

h|h(i)
)

= EX

[

log p (X, Y |h) |Y,h(i)
]

. (6)

If all values of X are equi-probable, the auxiliary function is

Q
(

h|h(i)
)

=
∑

X

log p (Y |X, h) APPi (X) , (7)

where APPi (X) = P
[

X|Y,h(i)
]

is the a posteriori proba-

bility of X.

1) EM with Energy Constraint: In order to estimate the

channel impulse response h, we re-write (4) as

Y = diag (X)Ωh + N. (8)

With the probability density function (pdf) of Y given X and

h, the auxiliary function can be written as

Q
(

h|h(i)
)

= − 1

2σ2

∑

X

‖ Y − diag (X)Ωh ‖2 APPi (X)

−
∑

X

N log 2πσ2 APPi (X) . (9)

In time varying multi-path Rayleigh channel, the channel coef-

ficients change from one OFDM symbol to another. However,

for each OFDM symbol we can define a real positive number

C such that:

‖ h ‖2= C. (10)

In order to update the parameters with EM algorithm (M-step),

taking into account (10), we utilise the Lagrange multipliers:






∂

∂h
Q
(

h|h(i)
)

+ Λ
∂

∂h
g (h) = 0

g (h) = 0
(11)



where Λ = diag
(

[λ, · · · , λ]
T
)

, and

g (h) =‖ h ‖2 −C. (12)

From (9), we have

∂

∂h
Q
(

h|h(i)
)

=
1

2σ2

∑

X

APPi (X)ΩT diag (X)
T

Y∗

− 1

2σ2

∑

X

APPi (X)ΩT diag (X)T
diag (X)∗ Ω∗h∗, (13)

where (·)∗ stands for complex conjugation and (·)T
stands for

transpose. From (12), we also have

∂

∂h
g (h) = h∗. (14)

Substituting (13) and (14) into the first equation of (11), the

new channel parameters h(i+1) can be calculated as:

h(i+1) =
(

ΩHR∗

N×NΩ− Λ
′

)

−1

ΩH ˜
diag (X)H

Y, (15)

where (·)H
stands for transpose-conjugate and Λ

′

= 2σ2Λ;

˜
diag (X)

T
is the N × N diagonal matrix of soft estimates of

X:

˜diag (X) ,
∑

X

APPi (X) diag (X) ; (16)

RN×N is a N × N matrix:

RN×N =
∑

X

APPi (X) diag (X)
T

diag (X)
∗

. (17)

We take advantage of iterative estimation to get the value of

Λ
′

. By using the first equation of (11), (13) and (14), we have:

Λ
′

h∗ = ΩTRN×NΩ∗h∗ − ΩT ˜
diag (X)T

Y∗. (18)

In (18), we replace h with h(i) to calculate Λ
′

, i.e.,

Λ
′

h(i)∗ = ΩTRN×NΩ∗h(i)∗ − ΩT ˜
diag (X)

T
Y∗ , V.

(19)

By making use of ‖h‖2 = C, we obtain the value of Λ
′

:

Λ
′

=
1

C
h(i)T V. (20)

In addition, λ
′

is a real number, so,

λ
′

= ℜe

{

1

C

L
∑

l=1

h
(i)
l vl

}

. (21)

The value of C for each OFDM symbol can be obtained from

the initial estimation based on pilots:

C =‖ h(0) ‖2 . (22)

For a phase modulated system, all symbols have the same

power A, and (17) can be simplified to:

RN×N = AIN×N . (23)

In addition, from the orthogonality of Ω, we have:

ΩHΩ = NIL×L. (24)

Using (23) and (24), (15) can be simplified to:

h(i+1) =
1

AN − λ′
ΩH ˜

diag (X)H
Y. (25)

2) EM without Energy Constraint : Without considering the

condition ‖ h ‖2, we only utilise the auxiliary function and

make
∂

∂h
Q
(

h|h(i)
)

= 0 to obtain the new channel coefficients

in M-step. By making use of (13), we have

h(i+1) =
(

ΩHR∗

N×NΩ
)−1

ΩH ˜
diag (X)

H
Y. (26)

For phase modulated system, (26) can be simplified to:

h(i+1) =
1

AN
ΩH ˜

diag (X)
H
Y. (27)

C. NCD-EM Channel Estimation

In this section, NCD-EM algorithm is derived with the

complete data chosen by decomposing the noise and ob-

servation components. NCD-EM channel estimation for an

uncoded OFDM system has been given in [6] and the NCD-

EM algorithm for coded OFDM system is derived here.

In order to estimate the channel impulse response h, we

re-write (4) as:

Y = Ah + N =

L−1
∑

l=0

Alhl + N, (28)

where A = diag (X)Ω. Al is the lth column of matrix A and

[A]l,k = al,k. From (28), we get

Yk =

L−1
∑

l=0

al,khl + Nk 0 ≤ k ≤ N − 1. (29)

The noise and observed data are decomposed as in [6]:

Zl,k = al,khl + Nl,k 0 ≤ k ≤ N − 1, (30)

where Nk =

L−1
∑

l=0

Nl,k. Thus,

Yk =

L−1
∑

l=0

Zl,k. (31)

We choose the complete data as Θ = (Z,A) and we obtain

the auxiliary function in (32) [8], where ak is the kth row of

the matrix A, ςl is the lth component of vector ς and

E
{

Zl,k|ak = ς,Y,h(i)
}

= h
(i)
l ςl + βl

(

Yk −
L−1
∑

l=0

h
(i)
l ςl

)

(33)

is the conditional expectation of Zl,k given ak = ς . βl controls

the rate of convergence of the EM algorithm [10]. We choose

βl =
1

L
[8] [11] in our simulations.

From (28), ak = XkΩk, where Ωk is the kth row of the

matrix Ω. Hence, the a posteriori conditional probability in

(32) can be written as:

P
(

ak = ς|Y,h(i)
)

= P
(

Xk = αm|Y,h(i)
)

, (34)



where αm represents the set of possible symbols in the

mapping constellation. The a posteriori conditional probability

is given by the decoder. Taking the partial derivative of (32)

with respect to each channel coefficient hl and making the

derivative to be zero, the new channel coefficient estimates

h
(i+1)
l can be expressed as (35).

IV. CRAMER-RAO BOUND

FOR CODED OFDM

The Cramér-Rao Bound (CRB) provides an MSE lower

bound to evaluate how good an unbiased estimator can

be [12] [13]. Besides, modified CRB (MCRB) is a looser

bound assuming perfect knowledge of the transmitted sig-

nal [14] [15]. Its computation is less complex. The CRB for

the uncoded OFDM system and the MCRB for the OFDM

system have been given in [6]. Here, we derive the CRB for

a coded OFDM system. For the vector parameter h [13]:

CRB (hl) = I−1
ll (h) , l = 0, · · · , L − 1 (36)

where I (h) is the Fisher information matrix:

I (h) = EY

{

∂

∂h
log p (Y|h)

(

∂

∂h
log p (Y|h)

)H
}

.

(37)

For coded transmission, the log-likelihood function is:

log p (Y|h) = log
∑

i

P [X = Mi] p (Y|X = Mi, h) ,

(38)

where i enumerates all possible values Mi of X. Differenti-

ating (38) and making use of Bayes’ rule, we obtain [16]

∂

∂h
log p (Y|h)

=
∑

i

APP (X = Mi)
∂

∂h
log p (Y|X = Mi, h) . (39)

With the probability density function (pdf) of Y given X and

h, we also have

∂

∂h
log p (Y|X = Mi, h) = − 1

2σ2
ΩT diag (Mi)

T
Y∗

+
1

2σ2
ΩT diag (Mi)

T
diag (Mi)

∗

Ω∗h∗. (40)

Substituting (40) into (39), we obtain

∂

∂h
log p (Y|h)

= − 1

2σ2
ΩT ˜

diag (X)
T
Y∗ +

1

2σ2
ΩTRN×NΩ∗h∗. (41)

Substituting (41) into (37), we obtain

CRB (h) =

L−1
∑

l=0

CRB (hl) = trace
(

I−1 (h)
)

. (42)

V. SIMULATION AND DISCUSSION

We show some simulation results of the coded OFDM sys-

tem introduced in section II for an ISI Rayleigh channel with

6-tap rectangular impulse response. Each OFDM symbol is

comprised of 128 sub-carriers and the CP length is 16 samples.

We use a half rate 64-state (133, 171) convolutional code and

16-QAM modulation. The pseudo-random interleaver size is

480 and 8 pilot symbols are uniformly inserted among data

sub-carriers. Figure 2 shows CRBs for OFDM systems without

coding and with two different coding schemes (1/2-rate and

1/5-rate). The better the encoding, the lower the CRB. For high

Es/N0, all CRBs converge to the MCRB as APP information

from the decoder becomes perfect; for low Es/N0, CRBs

for the coded systems converge to the CRB for the uncoded

system as decoding does not bring improvement anymore.

We first compare CL-EM with energy constraint (EC-EM)

and CL-EM without energy constraint (CL-EM). From Fig. 3,

we observe that, for both of them, the MSE already converges

at the second iteration at high Es/N0. However, EC-EM does

not reach the CRB, whereas CL-EM does. Indeed, for EC-

EM, the estimate of C is not accurate enough and degrades

the channel estimation. From Fig. 4, we observe that the

MSE degradation does not result in strong BER performance

Q
(

h|h(i)
)

= − 1

2σ2

L−1
∑

l=0

|hl|2
N−1
∑

k=0

∑

ς

|ςl|2P
(

ak = ς|Y,h(i)
)

+
1

σ2

L−1
∑

l=0

N−1
∑

k=0

ℜe

{

h∗

l

∑

ς

ς∗l E
{

Zl,k|ak = ς,Y,h(i)
}

P
(

ak = ς|Y,h(i)
)

}

(32)

h
(i+1)
l =

N−1
∑

k=0

∑

αm

α∗

mej2π
(l−1)(k−1)

N E
{

Zl,k|Xk = αm,Y,h(i)
}

P
(

Xk = αm|Y,h(i)
)

N−1
∑

k=0

∑

αm

|αm|2P
(

Xk = αm|Y,h(i)
)

(35)
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degradation. However, since EC-EM is more complex than

CL-EM, the latter is more efficient.

We also compare CL-EM and NCD-EM. From Fig. 5, we

see that NCD-EM has much slower convergence than CL-

EM, since it does not achieve CRB before the 16-th iteration.

Similar behavior is observed in Fig. 6 for BER performance,

whereas CL-EM approaches performance with perfect CSI

only with 4 iterations.
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VI. CONCLUSION

We derived EM based iterative algorithms to estimate the

channel impulse response for coded OFDM system. We com-

pared CL-EM algorithm with the complete data Θ = (X,Y)
with a NCD-EM algorithm decomposing the noise and obser-

vation components to obtain the complete data. The CL-EM

algorithm has faster convergence than NCD-EM. In addition,

constraining the CL-EM algorithm with an initial estimate of

the total impulse response power does not improve CL-EM

performance due to the inaccuracy of this initial estimate.
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