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Abstract—In order to increase the performance of joint
channel estimation and decoding through belief propagation
on factor graphs, we approximate the distribution of channel
estimate in the factor graph as a mixture of Gaussian dis-
tributions. The result is a continuous downward and upward
message propagation in the factor graph instead of discrete
probability distributions. Using continuous downward messages,
the computation complexity of belief propagation is reduced
without performance degradation. With both continuous upward
and downward messages, belief propagation almost achieves
the same performance as expectation-maximization under good
initialization and outperforms it under bad initialization.

I. INTRODUCTION

Factor graphs [1] are utilized to solve a large variety
of problems in decoding, channel estimation and detection
[2] by propagating messages in the graph according to the
belief propagation algorithm (BP), also called sum-product
algorithm [3], and can lead to a clean derivation of iterative
algorithms in a systematic way. In [4], the unified design of
iterative receivers is presented, based on factor graphs and
using canonical distributions (i.e., a quantization method) for
handling continuous variables. However, rough quantization
degrades estimation accuracy and fine quantization results in
large complexity. A better performance-complexity trade-off
is achieved through the expectation-maximization algorithm
(EM) [5] [6]. Indeed, EM directly handles continuous vari-
ables by using a posteriori probabilities (APPs) of transmitted
symbols.

In order to improve the accuracy of channel estimation
and synchronization through BP, [7] and [8] introduce adap-
tive quantization methods, called particle filtering, in each
iteration. However, the computation complexity is still much
higher than EM complexity. Here, we propose a Gaussian
approximation method which increases the precision of BP
channel estimation and reduces the computation complexity
simultaneously.

The paper is structured as follows. Section II describes the
transmission system model and explains how BP is applied on
the related factor graph. Section III shows why the distribution
of channel estimates in BP can be approximated by a mixture
of Gaussian distributions. In Section IV, APPs are calculated
with the approximated distribution; the approximation validity
is verified by numerical simulations. Channel estimation with
continuous upward messages in factor graph is presented in

Section V together with simulation results. Section VI draws
some conclusions.

II. SYSTEM MODEL

We consider a coded system with transmission over a quasi-
static single-input single-output (SISO) channel as shown in
Fig.1. An information binary sequence bi is encoded and
modulated into N BPSK symbols xk. After multiplication by a
single complex Gaussian channel coefficient Htrue ∼ CN (0, 1)
and addition of a complex Gaussian noise nk ∼ CN (

0, 2σ2
n

)
,

the channel outputs yk are processed by a receiver performing
joint channel estimation and decoding. Finally, the receiver
outputs the estimated information sequence b̂i. The system
model is described by

yk = Htrue xk + nk, 0 ≤ k ≤ N − 1. (1)

According to [4], the corresponding factor graph is shown
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Fig. 1. System model.

together with upward messages in Fig. 2 and downward
messages in Fig. 3. In node CODE, extrinsic information ξk is
computed for each transmitted symbol (or equivalently coded
bit) xk using a forward-backward algorithm and propagated to
node fk. In each node fk, a discrete distribution μfk→p(H) of
channel estimate H is computed based on a marginalization
of the likelihood p (yk|xk,H) with respect to the transmitted
symbol xk. A common discrete distribution p (H) is obtained
from the product of all μfk→p(H) and propagated down to
all nodes fk. Finally, the APP of each transmitted symbol xk

is computed based on this discrete distribution, marginalizing
the likelihood p (yk|xk,H) with respect to H . The whole
process of propagating upward and downward messages is
then iterated. Initial estimate is obtained from pilot symbols.

III. DISTRIBUTION OF CHANNEL ESTIMATE

As pilots are known at the receiver whereas data symbols are
not, the distribution of channel estimate will differ depending
on if it is based on pilots or on data symbols.
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A. Estimation based on pilots

Lp pilot symbols xpilot = +1 are included in the transmitted
sequence. From the Lp messages provided by fpilot,k nodes
corresponding to pilots, we get the discrete distribution of
H [3]:

p (H) =
Lp−1∏
k=0

μfpilot,k→p(H)

∝
q−1∑
i=0

δ (H − Hi) exp

⎛
⎝− 1

2σ2
n

Lp−1∑
k=0

|ypilot,k − Hi|2
⎞
⎠ ,

(2)

where
ypilot,k = Htrue xpilot,k + npilot,k, (3)

{Hi} is a quantization codebook of size q for channel esti-
mate’s probability density function (pdf) and δ (·) denotes the
Dirac delta function. For Lp � 1, we have

Lp−1∑
k=0

|ypilot,k − Hi|2 ≈ Lp|Hi − Htrue|2 + 2Lpσ
2
n. (4)

Surprisingly, this rough approximation for small Lp also yields
a good performance. Substituting (4) into (2), we obtain

p (H) ∝
q−1∑
i=0

exp

(
− Lp

2σ2
n

|Hi − Htrue|2
)

δ (H − Hi) . (5)

Hence, p (H) can be approximated as a Gaussian distribution

CN (Htrue,
2σ2

n

Lp
).

B. Estimation based on data

Let ξk be the extrinsic information for xk = +1. The
message from fk to p (H) can be expressed as [3]:

μfk→p(H) ∝
q−1∑
i=0

{
exp

(
−|yk − Hi|2

2σ2
n

)
ξk+

exp

(
−|yk + Hi|2

2σ2
n

)
(1 − ξk)

}
δ (H − Hi) . (6)

Using (1), we have

μfk→p(H) ∝
q−1∑
i=0

{
exp

(
−|Htrue − Hi ± nk|2

2σ2
n

)
αk

+exp

(
−|Htrue + Hi ± nk|2

2σ2
n

)
(1 − αk)

}
δ (H − Hi) , (7)

where

αk =
{

ξk for xk = +1,
1 − ξk for xk = −1.

(8)

Hence, the discrete distribution of H is

p (H) =
N−1∏
k=0

μfk→p(H) (9)

∝
q−1∑
i=0

δ (H − Hi)
2N∑
j=1

⎧⎨
⎩exp

⎛
⎝− 1

2σ2
n

Uj∑
u=1

|Htrue − Hi ± nu|2

− 1
2σ2

n

Vj∑
v=1

|Htrue + Hi ± nv|2
⎞
⎠ Uj∏

u=1

αu

Vj∏
v=1

(1 − αv)

⎫⎬
⎭ (10)

where Uj (resp. Vj) is the number of items with αk (resp.
(1 − αk)) in sequence j. In (10), using mean and variance
properties of nk, we get

Uj∑
u=1

|Htrue − Hi ± nu|2 +
Vj∑

v=1

|Htrue + Hi ± nv|2 ≈ 2Nσ2
n

+ N |Hi +
Vj − Uj

N
Htrue|2 +

(
N − (Vj − Uj)

2

N

)
|Htrue|2.

(11)

Substituting (11) into (10), we obtain

p (H)

∝
q−1∑
i=0

δ (H − Hi)
2N∑
j=1

exp

{
− 1

2σ2
n

N |Hi +
Vj − Uj

N
Htrue|2

}

× exp

{
−|Htrue|2

2σ2
n

(
N − (Vj − Uj)

2

N

)}
Uj∏

u=1

αu

Vj∏
v=1

(1 − αv).

(12)
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1) At low SNR, ξk → 0.5, i.e., αk → 0.5. Hence, (12) can
be approximated as

p (H)

∝
q−1∑
i=0

δ (H − Hi)

{
exp

{
− N

2σ2
n

|Hi − Htrue|2
} N∏

u=1

αu

+exp

{
− N

2σ2
n

|Hi + Htrue|2
} N∏

v=1

(1 − αv)

}
. (13)

2) At high SNR, extrinsic information from the decoder is
almost perfect and (12) can be simplified into

p (H)

∝
q−1∑
i=0

δ (H − Hi) exp

{
− N

2σ2
n

|Hi − Htrue|2
} N∏

u=1

αu.

(14)

Thus, p (H) can be approximated as a mixture of two Gaussian
distributions:

p (H) ∝
q−1∑
i=0

δ (H − Hi)
{

exp

{
− N

2σ2
n

|Hi − Htrue|2
}

β

+exp

{
− N

2σ2
n

|Hi + Htrue|2
}

(1 − β)
}

, (15)

where β represents the product of αk and shows how close to
a single Gaussian distribution p (H) is.

IV. CONTINUOUS DOWNWARD MESSAGES

With the conclusions in Section III, the discrete distribution
message μp(H)→fk

can be reduced to one pair (Ĥtrue, σ̂
2
H)

characterizing p (H). Ĥtrue is computed as the mean value of
the discrete distribution in (2) (resp. (9)) and σ̂2

H is equal
to σ2

n/Lp (resp. σ2
n/N ). So, we can calculate each downward

message APPk in a continuous way instead of computing it for
each codebook value Hi and then marginalizing with respect
to H . It reduces the computation complexity.

A. APP from pilot-based estimation

From Section III-A, for the estimation based on pilots, the
channel estimate’s distribution can be approximated as one
Gaussian distribution. Thus, the APP for transmitted symbol
xk = s (s = +1 or s = −1) can be expressed as

APPxk=s ∝
∫

H

p (yk|xk = s;H) p (H) dH. (16)

After some calculations, we get

APPxk=s ∝ 1
8π (σ̂2

H + σ2
n)

exp

{
−|yk − s Ĥtrue|2

2 (σ̂2
H + σ2

n)

}
. (17)

Normalizing APPxk=+1 + APPxk=−1 to 1, we obtain

APPxk=+1 =

⎧⎨
⎩1 + exp

⎛
⎝−

−2�e
{

ykĤ∗
true

}
σ̂2

H + σ2
n

⎞
⎠
⎫⎬
⎭

−1

. (18)

B. APP from data-based estimation

From section III-B, we know that, for the estimation based
on data, p (H) can be approximated by a mixture of two
Gaussian distributions. Thus,

APPxk=s ∝ β exp

{
−|yk − s Ĥtrue|2

2 (σ̂2
H + σ2

n)

}

+ (1 − β) exp

{
−|yk + s Ĥtrue|2

2 (σ̂2
H + σ2

n)

}
. (19)

Normalizing APPxk=+1 + APPxk=−1 to 1, we get

APPxk=+1 =

β + (1 − β) exp

⎧⎨
⎩−

−2�e
{

ykĤ∗
true

}
σ̂2

H + σ2
n

⎫⎬
⎭

1 + exp

⎧⎨
⎩−

−2�e
{

ykĤ∗
true

}
σ̂2

H + σ2
n

⎫⎬
⎭

.

(20)

C. Numerical results

We compare BP using APP computation based on the
Gaussian approximation (BP-QT-DGA) with BP using APP
computation based on the discrete distribution (BP-QT). We
also compare these two approaches using an adaptive quanti-
zation (BP-ADQT-DGA vs BP-ADQT). We use the adaptation
method presented in [7]: the range of quantization codebook is
shrinked in order to filter out the probability values lower than
a threshold. We choose 0.2 as threshold in our simulations. For
the Gaussian approximation, we always set β = 1. Indeed,
our simulations have shown that this choice does not degrade
performance compared to accurate evaluation of β and is less
complex.

From Fig. 4 and Fig. 5, we observe that BP-QT-DGA and
BP-ADQT-DGA perform as well as BP-QT and BP-ADQT
respectively. Nevertheless, thanks to the computation in (18)
and (20), a single APP computation instead of q computations
is performed for each symbol xk with the Gaussian approxi-
mation. Since the derivation of each message μfk→p(H) still
involves q computations, one per codebook value, the global
complexity reduction brought by the Gaussian approximation
in the downward messages is approximately 50% for large q.

However, all BP approaches simulated in this section do not
outperform or even approach the performances of EM.

V. CONTINUOUS UPWARD MESSAGES

In order to improve the performance of the Gaussian approx-
imation, we propose to increase the accuracy of Ĥtrue using a
continuous upward message.

A. Upward messages from pilots

By replacing the quantization codebook {Hi} in (2) with
a continuous value H and considering normalization, we get
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Fig. 4. Mean square error performance comparison of BP and EM. Rate 1/2
convolutional code (23, 35) with block length 1000. Number of pilots is 10.
The initial quantization interval is [-10,+10] with a step equal to 0.8.
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Fig. 5. Bit error rate performance comparison of BP and EM. Rate 1/2
convolutional code (23, 35) with block length 1000. Number of pilots is 10.
The initial quantization interval is [-10,+10] with a step equal to 0.8.

the following estimated mean value of H:

Ĥtrue =

∫
H

H
1

(2πσ2
n)Lp

exp

⎧⎨
⎩− 1

2σ2
n

Lp−1∑
k=0

|yk − H|2
⎫⎬
⎭ dH

∫
H

1

(2πσ2
n)Lp

exp

⎧⎨
⎩− 1

2σ2
n

Lp−1∑
k=0

|yk − H|2
⎫⎬
⎭ dH

.

(21)

The integration of numerator and denominator in (21) results
in the following simple formula:

Ĥtrue =
1
Lp

Lp−1∑
k=0

yk. (22)

B. Upward messages from data

Replacing the discrete computation in (6) by an integral, we
get the mean value of H in (23), in which

N−1∏
k=0

[
exp

(
−|yk − H|2

2σ2
n

)
ξk + exp

(
−|yk + H|2

2σ2
n

)
(1 − ξk)

]

=
2N−1∑
j=0

exp

(
− 1

2σ2
n

N−1∑
k=0

|yk − sk,jH|2
)

Δj , (24)

where sk,j represents the value (-1 or +1) of the kth symbol
in sequence j and

Δj =
∏

sk,j=+1

ξk

∏
sk,j=−1

(1 − ξk). (25)

After some calculations, we obtain (26). In order to reduce
the computation in (26), we only consider the item with the
largest Δj in both numerator and denominator:

Ĥtrue ≈ 1
N

N−1∑
k=0

sk,jmaxyk, (27)

where jmax = arg max
j

Δj .

Ĥtrue =

∫
H

H

N−1∏
k=0

[
exp

(
−|yk − H|2

2σ2
n

)
ξk + exp

(
−|yk + H|2

2σ2
n

)
(1 − ξk)

]
d H

∫
H

N−1∏
k=0

[
exp

(
−|yk − H|2

2σ2
n

)
ξk + exp

(
−|yk + H|2

2σ2
n

)
(1 − ξk)

]
d H

. (23)

Ĥtrue =

2N−1∑
j=0

Δj
1

N

(
N−1∑
k=0

sk,jyk

)
exp

⎧⎨
⎩ 1

2Nσ2
n

∣∣∣∣∣
N−1∑
k=0

sk,jyk

∣∣∣∣∣
2
⎫⎬
⎭

2N−1∑
j=0

Δjexp

⎧⎨
⎩ 1

2Nσ2
n

∣∣∣∣∣
N−1∑
k=0

sk,jyk

∣∣∣∣∣
2
⎫⎬
⎭

. (26)
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C. Numerical results

We now compare BP with continuous downward and up-
ward messages (BP-DUGA) with EM. From Fig. 6, we ob-
serve that, with 10 pilots, i.e., good initialization, the proposed
BP-DUGA achieves bit error rate (BER) performance close to
EM.

Furthermore, from Fig. 7 and Fig. 8, with 1 pilot for
initial estimate, we observe that the proposed BP-DUGA
performs better than EM: BP-DUGA’s mean square error
(MSE) performance in Fig. 7 is closer to modified Cramér-
Rao bound (MCRB) [9]; for BER performance in Fig. 8, we
obtain a gain of about 1 dB with BP-DUGA compared to
EM and almost achieve the performance with perfect channel
state information. Using continuous upward messages brings
a complexity reduction compared to BP-QT-DGA and BP-
ADQT-DGA. As a result, BP-DUGA complexity becomes
equivalent to EM complexity.
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Fig. 6. Bit error rate performance comparison for channel estimation: BP-
DUGA vs EM. Rate 1/2 convolutional code (23, 35) with block length 1000.
Number of pilots is 10.
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Fig. 7. Mean square error performance comparison for channel estimation:
BP-DUGA vs EM. Rate 1/2 convolutional code (23, 35) with block length
1000. Number of pilots is 1.
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Fig. 8. Bit error rate performance comparison for channel estimation: BP-
DUGA vs EM. Rate 1/2 convolutional code (23, 35) with block length 1000.
Number of pilots is 1.

VI. CONCLUSION

We validated that the distribution of channel estimate in a
factor graph can be approximated as a mixture of Gaussian
distributions. With this approximation, we derived continuous
downward and upward messages to be propagated in the factor
graph by BP. Through performance improvement brought by a
continuous upward message, BP-DUGA almost achieves EM
performance under a good initialization and outperforms it
under a bad initialization. Furthermore, thanks to both contin-
uous downward and upward messages, BP-DUGA computa-
tion complexity is equivalent to EM. This paper is focusing
on a single-path channel. Nevertheless, the extension of the
Gaussian approximation principle to a multipath channels is
natural.
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