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Abstract

Expectation-maximization (EM) based iterative algorithms are investigated in order to estimate the impulse

response of a frequency-selective multipath channel in a coded OFDM system. Two ways of choosing the EM

complete data are compared: a complete data built from observations and transmitted symbols (CL-EM) and a

complete data chosen by decomposing noise and observation components (NCD-EM). Both CL-EM and NCD-EM

algorithms are derived for a coded OFDM system. The rate of convergence of both EM algorithms is theoretically

determined. It is found that the rate of convergence of CL-EM is independent from the number of channel taps at

high signal-to-noise ratio (SNR), while that of NCD-EM varies with the number of taps. It is shown that CL-EM

converges in a few iterations. Furthermore, considering the complexity per iteration, CL-EM has a lower complexity

than its counterpart. We also establish a Cramér-Rao bound (CRB) for coded OFDM transmission. Simulation results

show that CL-EM has a good performance-complexity trade-off and it achieves the CRB.
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I. INTRODUCTION

Coded orthogonal frequency-division multiplexing (OFDM) has been chosen as the air interface for

recent cellular and wireless local area network (WLAN) systems by virtue of its good performance,

flexibility, and low implementation complexity.

A number of channel estimation methods have been proposed for OFDM. When pilot symbols are

available on some sub-carriers, initial estimates are easily obtained and can be improved through frequency-

and time-domain interpolation [1] or according to the minimum mean square error (MMSE) criterion [2].

Blind channel estimation methods, not relying on the presence of pilot symbols, have also been proposed.

For instance, they take benefit from the cyclostationarity of the OFDM signal [3]. However, all these

algorithms have their limitations: insufficient accuracy, low spectrum efficiency due to pilot overhead, or

high sensitivity to Doppler in case of blind estimation.

As hardware capacity is continuously increasing, it becomes more feasible to implement iterative

receivers allowing for improvement of physical layer functions. Among these functions, channel estimation

especially benefits from data-aided methods requiring a feedback from the channel decoder. The iterative

expectation-maximization (EM) estimation algorithm [4] is particularly well suited for OFDM systems with

low pilot overhead. Instead of computing the maximum likelihood channel estimate from the observations

only, it makes use of the so-called complete data κ, which are not observed directly but only through

incomplete data. Since κ is a random variable, the log-likelihood can be averaged over κ knowing the

incomplete data and a current channel estimate. A new channel estimate is then obtained by maximizing

the average log-likelihood, which results in the EM iterative structure. The likelihood increases along

EM iterations [4]. A classic way (CL-EM) to choose the complete data is κ = (X,Y), where X

is the transmitted signal and Y is the observation [5]. Classic EM estimation for OFDM with space-

frequency coding has been studied in [6]. In [7] and [8], for uncoded OFDM, complete data is obtained

by decomposing the noise and observation components (NCD-EM). In [9], NCD-EM is also applied to a

coded single-carrier system.
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In this paper, we derive CL-EM and NCD-EM algorithms for coded OFDM systems and compare them

from two aspects: complexity and performance. The complexity of the EM algorithm depends on two

factors: the complexity in each iteration and the rate of convergence of the EM algorithm. In [4] and [10],

the general rate of convergence of the EM algorithm is analyzed with mathematical derivation and graphical

illustration respectively. Based on [4], we derive the rates of convergence of CL-EM and NCD-EM for

a coded OFDM system. Together with the complexity in each iteration, the overall complexity of the

EM algorithm can be obtained. Concerning performance, we compare CL-EM and NCD-EM for a coded

OFDM system in terms of mean square error (MSE) and bit error rate (BER). In addition, we determine

the Cramér-Rao bound for this coded OFDM system, as an ideal reference for MSE performance.

The rest of the paper is organized as follows. Section II describes the coded OFDM system and introduces

the EM channel estimator. In section III, we develop the CL-EM and NCD-EM algorithms for the coded

OFDM system. In section IV, we compare the two proposed EM algorithms in terms of complexity per

iteration and rate of convergence, and discuss their overall complexities. Section V presents CRB for coded

OFDM. Section VI includes performance results, and finally, some conclusions are drawn in section VII.

II. SYSTEM DESCRIPTION

We consider a coded OFDM signal transmitted over a single-input single-output (SISO) frequency-

selective channel as shown in Fig. 1.

An information binary sequence S is encoded into a coded sequence C. The encoded bits are then

interleaved by a pseudo-random interleaver and modulated. After pilot insertion, the obtained sequence

X = (X0, · · · , XN−1)
T

is processed by an inverse Fast Fourier transform (IFFT), which provides the

time-domain sequence x = (x0, · · · , xN−1)
T = U†X, where U is the normalized N × N FFT matrix

with the (m, n) entry equal to
1√
N

e−
j2π(m−1)(n−1)

N (m, n = 1, 2, · · · , N ) and (·)† stands for transpose-

conjugate. After insertion of a cyclic prefix (CP) with length LCP, the transmitted OFDM symbol is
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x
′
= (xN−LCP

,· · · ,xN−1, xT )T
. The received sequence is y

′
=
(
y

′
0, · · · , yN+LCP−1

)T
with

y
′
k =

L−1∑
l=0

hlx
′
k−l + nk, LCP ≤ k ≤ N + LCP − 1, (1)

where L is the number of taps in the channel, L � LCP, h = (h0, · · · , hL−1)
T

is the channel impulse

response, and nk is a complex Gaussian noise with zero mean and variance 2σ2. After CP removal, the

received time domain sequence y = (y0, · · · , yN−1)
T

is processed by FFT. The received sequence in

the frequency domain is Y = (Y0, · · · , YN−1)
T = Uy. We assume that the channel impulse response is

constant over one OFDM symbol. Finally, the well-known OFDM discrete-time model is [11]

Y = diag (H)X + N, (2)

where N = (N0, · · · , NN−1)
T = Un has the same distribution as n = (n0, · · · , nN−1)

T
, H = (H0, · · · , HN−1)

T

represents the channel frequency-response H = Ωh, where the N × L matrix Ω is built from the L first

columns of U, and diag (H) represents a diagonal matrix with Hk as its (k, k) entry.

An initial channel estimate is obtained from pilots included in the sequence Y. Soft information produced

by the demodulator on coded bits is de-interleaved into sequence Ĉ, which is processed by the decoder.

After decoding, a posteriori probabilities are fed back to the EM-based estimator which updates the

channel estimate for next demodulation and decoding. Thus, the soft information and the channel estimate

are improved along iterations.

III. EM-BASED CHANNEL ESTIMATION

A. Notations for the EM Algorithm

The EM algorithm provides a recursive solution to ML estimation [4] [12] and it performs a two-step

procedure as shown in Fig. 2:

1) E-step: compute the auxiliary function Q
(
h|h(i)

)
= Eκ

[
log p (κ |h) |Y,h(i)

]
;

2) M-step: update the parameters h(i+1) = arg max
h

Q
(
h|h(i)

)
,

where κ is called the complete data. It is possible to define the complete data in different ways leading

to different types of EM algorithms. A classic definition is to choose κ = (X,Y). This is named
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classic EM (CL-EM). For superimposed signals, it has been shown in [13] that the complete data can

be chosen by decomposing noise components into independent noise processes. This is named noise

component decomposition EM (NCD-EM). NCD-EM has been utilized in some applications, such as

uncoded OFDM with single and multiple transmit antennas (see [8] and [7] respectively) and coded

single-carrier transmission on fading channel with uncorrelated and correlated paths (see [9] and [14]

respectively).

B. CL-EM Channel Estimation

Here, we define the complete data as in the classic method [5]: κ = (X,Y). X is called the missing

data and Y the incomplete data. So, the E-step can be re-written as

Q
(
h|h(i)

)
= EX

[
log p (X, Y |h) |Y,h(i)

]
. (3)

If all values of X are equiprobable, the auxiliary function can be written as

Q
(
h|h(i)

)
= EX

[
log p (Y |X, h) |Y,h(i)

]
=
∑
X

log p (Y |X, h) APP(i) (X) , (4)

where APP(i) (X) = P
(
X|Y,h(i)

)
is the a posteriori probability of X in the ith iteration.

In [15], we derived an EM algorithm by considering an energy constraint, called EC-EM. However,

we found that EC-EM does not perform so well because of a rough estimation of the energy constraint.

Therefore, we focus here on the CL-EM without energy constraint. In order to estimate the channel impulse

response h, we re-write (2) as

Y = diag (X)Ωh + N. (5)

With the Gaussian noise assumption, given X and h, we have Y ∼ CN (diag (X)Ωh, 2σ2IN), where IN

represents the unit matrix of size N . Then, the auxiliary function can be written as

Q
(
h|h(i)

)
= − 1

2σ2

∑
X

‖Y − diag (X)Ωh‖2 APP(i) (X) −
∑
X

N log 2πσ2 APP(i) (X) . (6)
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The new channel estimate h(i+1) is the value of h satisfying
∂

∂h
Q
(
h|h(i)

)
= 0,

h(i+1) =
(
Ω†R(i)∗

N×NΩ
)−1

Ω† ˜
diag (X)(i)†Y, (7)

where
˜

diag (X)(i)
is the N × N diagonal matrix of soft estimates of X:

˜
diag (X)(i) �

∑
Xj

APP(i) (Xj) diag (Xj)

= diag

⎛
⎝[∑

m

APP(i) (X0 = αm) αm, · · · ,
∑
m

APP(i) (XN−1 = αm) αm

]T
⎞
⎠ , (8)

where αm (m = 0, · · · , M − 1) represents the set of possible symbols in the mapping constellation, M

represents the size of the mapping constellation and APP(i) (Xk = αm) is the a posteriori probability of

Xk = αm in the ith iteration; R
(i)
N×N is a N × N matrix:

R
(i)
N×N =

˜
diag (X)(i)T

diag (X)(i)∗

= diag

⎛
⎝[∑

m

APP(i) (X0 = αm) |αm|2 , · · · ,
∑
m

APP(i) (XN−1 = αm) |αm|2
]T
⎞
⎠ . (9)

For a phase modulated system, all symbols have the same energy E . Thus, (7) can be simplified into

h(i+1) =
1

EN
Ω† ˜

diag (X)(i)†Y. (10)

C. NCD-EM Channel Estimation

In this section, the NCD-EM algorithm is derived with the complete data chosen by decomposing the

noise and observation components. NCD-EM channel estimation for an uncoded OFDM system has been

introduced in [7] and the NCD-EM algorithm for a coded OFDM system is derived here.

In order to estimate the channel impulse response h, we re-write (2) as:

Y = Ah + N =
L−1∑
l=0

Alhl + N, (11)

where A = diag (X)Ω, Al is the lth column of matrix A and [A]k,l = ak,l. From (11), we get

Yk =
L−1∑
l=0

ak,lhl + Nk, 0 ≤ k ≤ N − 1. (12)
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The noise and observed data are decomposed as in [7]:

N =
L−1∑
l=0

Nl, Y =
L−1∑
l=0

(Alhl + Nl) =
L−1∑
l=0

Zl, (13)

where Nl = (N0,l, · · · , NN−1,l)
T

with a variance 2σ2
l = 2βlσ

2, Zl = (Z0,l, · · · , ZN−1,l)
T

and Zl =

Alhl + Nl. Here, the noise variance factors βl’s, which satisfy

L−1∑
l=0

βl = 1, are important parameters

which control the rate of convergence of the NCD-EM algorithm [13]. We choose the complete data as

κ = (Z,A), where Z = (Z0, · · · ,ZL−1), and the auxiliary function for the NCD-EM can be written as

Q
(
h|h(i)

)
= Eκ

[
log p (κ |h) |Y,h(i)

]
=
∑
A

∫
Z

P
(
Z, A |Y,h(i)

)
log p (Z, A |h) dZ. (14)

With equiprobable transmitted symbols, the auxiliary function becomes

Q
(
h|h(i)

)
=
∑
A

∫
Z

P
(
Z, A |Y,h(i)

)
log p (Z |A, h) dZ. (15)

After some derivations given in Appendix A, we get

Q
(
h|h(i)

)
= − 1

2σ2

L−1∑
l=0

|hl|2
N−1∑
k=0

∑
ς

|ςl|2P
(
ak = ς|Y,h(i)

)

+
1

σ2

L−1∑
l=0

N−1∑
k=0

�e

{
h∗

l

∑
ς

ς∗l E
{
Zk,l|ak = ς,Y,h(i)

}
P
(
ak = ς|Y,h(i)

)}
. (16)

where ak = (ak,0, · · · , ak,l, · · · , ak,L−1) is the kth row of the matrix A, ςl is the lth component of vector

ς and [9]

E
{
Zk,l|ak = ς,Y,h(i)

}
= h

(i)
l ςl + βl

(
Yk −

L−1∑
l=0

h
(i)
l ςl

)
. (17)

We choose βl =
1

L
[9] [14] in our simulations, which provides the best rate of convergence as it will be

proved in the next section. From (11), ak = XkΩk, where Ωk is the kth row of the matrix Ω. Hence, the a

posteriori conditional probability in (16) can be written as P
(
ak = ς|Y,h(i)

)
= P
(
Xk = αm|Y,h(i)

)
. The

a posteriori conditional probability is produced by the decoder. Taking the partial derivative of (16) with

respect to each channel coefficient hl and making the derivative equal to zero, the new channel coefficient
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estimates h
(i+1)
l may be expressed as:

h
(i+1)
l =

N−1∑
k=0

∑
αm

α∗
mej2π

(l−1)(k−1)
N E

{
Zk,l|Xk = αm,Y,h(i)

}
P
(
Xk = αm|Y,h(i)

)
N−1∑
k=0

∑
αm

|αm|2P
(
Xk = αm|Y,h(i)

) . (18)

For phase modulated systems, (18) can be simplified into:

h
(i+1)
l =

1

EN

N−1∑
k=0

∑
αm

α∗
mej2π

(l−1)(k−1)
N E

{
Zk,l|Xk = αm,Y,h(i)

}
P
(
Xk = αm|Y,h(i)

)
. (19)

IV. COMPLEXITY AND CONVERGENCE RATE COMPARISON

In this section, the complexity of CL-EM and NCD-EM are analyzed and compared.

A. Complexity per Iteration

In order to compare the complexity of CL-EM and NCD-EM in one iteration, we re-write (18) in a

matrix form:

h(i+1) =
1

Tr(R
(i)
N×N)

[
Tr(R

(i)
N×N)h(i) +

1

L
Ω† ˜

diag (X)(i)†Y − 1

L
Ω†R(i)

N×NΩh(i)

]
. (20)

For phase modulated system, (20) becomes:

h(i+1) = (1 − 1

L
)h(i) +

1

ENL
Ω† ˜

diag (X)(i)†Y. (21)

We check the number of complex multiplications in (7), (20), (10) and (21) as shown in Table 1 [16] and

Table 2. For QAM modulation, CL-EM in most cases needs more computations than NCD-EM in one

iteration, and the ratio of numbers of complex multiplications is (N � L3 and L � 1)

N × (L2 + 2L + 1) +
4

3
L3 + L2

N × (3L + 2) + L
≈ L2 + 2L + 1

3L + 2
≈ L

3
. (22)

For phase modulated system, CL-EM needs L computations less than NCD-EM in one iteration.

The reader should notice that the modulation size does not appear in Tables 1 and 2, because expectations

based on a posteriori probability, which are common operations to both estimation methods, are not taken

into account.
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B. Analysis of the Convergence Rate

From [4] and [17], we know that the rate of convergence of the EM algorithm can be evaluated as:

DM (hc) = D11H (hc|hc)
[
D11Q (hc|hc)

]−1
, (23)

where hc represents the limit point of the converging sequence hi,

D11H (hc|hc) = Eκ

{
∂

∂hc
log p (κ|Y,hc)

[
∂

∂hc
log p (κ|Y,hc)

]†
|Y,hc

}
, (24)

and

D11Q (hc|hc) = Eκ

{
∂

∂hc
log p (κ|hc)

[
∂

∂hc
log p (κ|hc)

]†
|Y,hc

}
. (25)

The largest eigenvalue of DM (hc) gives the rate of convergence for the algorithm.

Recall the relationship between the Fisher information and the rate of convergence of the EM algo-

rithm [4]:

a) D11H (hc|hc) is the Fisher information in the unobserved part of κ about hc;

b) D11Q (hc|hc) is the Fisher information in the complete data κ about hc, and D11Q (hc|hc) can be

written as:

D11Q (hc|hc) = D11H (hc|hc) + D2L (hc) , (26)

where L (hc) = log p(Y|hc); D2L (hc) = EY

{
∂

∂hc
L (hc)

[
∂

∂hc
L (hc)

]†}
is a measure of the information

in the incomplete data Y.

Therefore, the rate of convergence for the EM algorithm in (23) can be interpreted as:

Rate of Convergence =
Lost information due to unobserved data

All information in complete data
. (27)

Thus, a smaller rate of convergence implies that less information is lost and the EM algorithm converges

faster.
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1) CL-EM Algorithm: For CL-EM, the complete data is κ = (X,Y). From (24), we get

D11H (hc|hc) = EX

{
∂

∂hc
log p (X,Y|Y,hc)

[
∂

∂hc
log p (X,Y|Y,hc)

]†
|Y,hc

}
. (28)

With the derivations in Appendix B assuming high SNR, we get

D11H (hc|hc) ≈ 0. (29)

From (25) and the complete data of CL-EM,

D11Q (hc|hc) = EX

{
∂

∂hc
log p (X,Y|hc)

[
∂

∂hc
log p (X,Y|hc)

]†∣∣∣∣∣Y,hc

}
. (30)

Considering the equiprobability of transmitted data, we re-write (30) as

1

(2σ2)2 EX

{
ΩTdiag (X)T [Y∗ − diag (X)∗ Ω∗hc∗] [Y∗ − diag (X)∗ Ω∗hc∗]† diag (X)∗ Ω∗

∣∣∣Y,hc
}

=
1

2σ2

∑
Xj

APP(i) (Xj)Ω
Tdiag (Xj)

T
diag (Xj)

∗ Ω∗ =
1

2σ2
ΩTRN × NΩ∗, (31)

where RN × N is always greater than 0.

Therefore, at high SNR, CL-EM algorithm always leads to

DM (hc) ≈ 0. (32)

With this rate of convergence close to zero, we can expect that CL-EM should be already very close to

its fix point at the second iteration, i.e., after the first one based on pilots.

2) NCD-EM Algorithm: For NCD-EM, the complete data is κ = (Z,A). From (24), we have

D11H (hc|hc) = E(Z,A)

{
∂

∂hc
log p (Z,A|Y,hc)

[
∂

∂hc
log p (Z,A|Y,hc)

]†∣∣∣∣∣Y,hc

}
, (33)

With the derivations in Appendix C, where β = [β0, · · · , βL−1]
T
, E is the average energy of transmitted

symbols and IL represents the identity matrix of size L, we have, assuming high SNR,

D11H (hc|hc) ≈ 1

2σ2
NE [diag (β)−1 − IL

]
. (34)

From (25),

D11Q (hc|hc) = E(Z,A)

{
∂

∂hc
log p (Z,A|hc)

[
∂

∂hc
log p (Z,A|hc)

]†
|Y,hc

}
. (35)
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Using log p (Z,A|hc) = log p (Z|A,hc) + log p (A) and (C-4), we get

D11Q (hc|hc) =
1

2σ2
NEdiag (β)−1 . (36)

Substituting (34) and (36) into (23), we obtain DM (hc) = IL − diag (β). The eigenvalues of DM (hc)

are 1 − βl, 0 ≤ l ≤ L − 1, which explains why βl =
1

L
is the best choice as suggested by simulation

results in [9] and [14]: the largest eigenvalue is minimized and the best NCD-EM convergence is achieved.

With this choice, DM (hc) can be written as DM (hc) = diag

([
1 − 1

L
, · · · , 1 − 1

L

]T
)

and we see the

relationship between the rate of convergence and the number of taps in the channel: the more taps there

are in the channel, the slower the NCD-EM converges.

C. Overall complexity

Based on sections IV-A and IV-B, we can analyze the overall complexity of the CL-EM and the NCD-

EM. Since the best rate of convergence of NCD-EM is 1− 1

L
, we assume that the number of iterations for

convergence is L. Thus, the total number of complex multiplications for convergence is L2+N(3L2+2L).

However, the numerical results in Fig. 6 and Fig. 7 will show that the actual number of iterations of NCD-

EM is larger than L. On the other hand, the rate of convergence of CL-EM is approximately 0. Therefore,

the total number of complex multiplications for convergence is approximately equal to that of a single

iteration.

First, we check the difference D(L, N) between the number of complex multiplications in NCD-EM

denoted by NNCDoverall
and the number of complex multiplications in CL-EM denoted by NCLoverall

. With

QAM modulations:

DQAM(L, N) = NNCDoverall
− NCLoverall

= N
(
2L2 − 1

)− 4

3
L3. (37)

Since, for N >
4

3
, DQAM(1, N) > 0 and, for 1 ≤ L < N ,

∂

∂L
DQAM(L, N) > 0, DQAM(L, N) is always

greater than zero with N >
4

3
and 1 ≤ L < N which is always true in practice. Especially, when N � L3
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and L � 1, together with (22), the ratio of overall complexities can be expressed as

NCLoverall

NNCDoverall

≈ L

3 × L
≈ 1

3
. (38)

Since the assumption of L iterations underestimates the number of iterations of NCD-EM, we can

expect a smaller ratio in practice. Therefore, with a QAM modulation, even though CL-EM needs more

computations than NCD-EM in one iteration, CL-EM has a lower overall complexity thanks to the almost

zero rate of convergence.

For phase modulated systems, since CL-EM needs less computations in one iteration and converges

faster than NCD-EM, it is obvious that CL-EM has a lower overall complexity than NCD-EM. With phase

modulated systems, the ratio of overall complexities can be expressed as (N � L2)

NCLoverall

NNCDoverall

=
N(L + 1) + L

N(L2 + L) + 2L2
≈ 1

L
. (39)

V. CRAMER-RAO BOUND FOR CODED OFDM

The Cramér-Rao Bound (CRB) provides a lower bound for MSE to evaluate how good an unbiased

estimator can be [18] [17]. Besides, modified CRB (MCRB) is a looser bound assuming perfect knowledge

of the transmitted signal [19] [20]. Its computation is less complex. The CRB for the uncoded OFDM

system and the MCRB for the OFDM system have been given in [7]. Here, we derive the CRB for a

coded OFDM system. For the vector parameter h [17]:

CRB (hl) = I−1
ll (h) , l = 0, · · · , L − 1 (40)

where I (h) is the Fisher information matrix:

I (h) = EY

{
∂

∂h
log p (Y|h)

(
∂

∂h
log p (Y|h)

)†}
. (41)

Making use of (B-8), we have

∂

∂h
log p (Y|h) = − 1

2σ2
ΩT ˜

diag (X)(i)TY∗ +
1

2σ2
ΩTR

(i)
N×NΩ∗h∗. (42)
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Substituting (42) into (41), we obtain the Fisher information matrix. The CRB for a single parameter is

I−1
ii (h) and the overall CRB for all parameters is

CRB (h) =
L−1∑
l=0

CRB (hl) = Tr
(
I−1 (h)

)
. (43)

In our simulations, the Fisher information is obtained from the average over a large number of OFDM

symbols and the final CRB is obtained by substituting the Fisher information into (43).

VI. NUMERICAL RESULTS

In order to demonstrate the validity and the effectiveness of the proposed EM-based channel estimation

algorithms, the coded OFDM system introduced in section II has been simulated. A 6-tap rectangular

Rayleigh ISI channel has been considered. The entire channel bandwidth is divided into 128 sub-carriers

and the cyclic prefix length is 16 samples. A 1/2-rate (133, 171)8 nonsystematic nonrecursive convolutional

code and a pseudo-random interleaver of size 480 are used in simulations. The modulation scheme is 16-

QAM. Pilot symbols are uniformly inserted into every OFDM symbol.

A. Cramér-Rao Bound

Figure 3 shows CRBs for OFDM systems without coding and with two different coding schemes: the

first code is the rate 1/2 code mentioned above with minimum distance 10; the second code is a rate

1/5 convolutional code with minimum distance 25. Improving the code performance at a given signal-to-

noise ratio (Es/N0) results in a lower CRB. For high Es/N0, all CRBs converge to the MCRB as APP

information from the decoder becomes perfect; for low Es/N0, CRBs for the coded systems converge to

the CRB for the uncoded system as decoding does not bring improvement anymore.

B. CL-EM versus NCD-EM

We also compare CL-EM and NCD-EM. From Fig. 4, we see that NCD-EM has slower convergence

than CL-EM, it does not achieve CRB before the 18-th iteration. Similar behavior is observed in Fig. 5 for
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BER performance, whereas CL-EM approaches performance with perfect channel state information (CSI)

after 4 iterations only.

C. Rate of Convergence and Complexity

In order to show the convergence of CL-EM and NCD-EM more clearly, we draw the ratio of estimate

differences in Fig. 6 and Fig. 7, where

ratio of estimate differences =
‖h(i+1) − h‖
‖h(i) − h‖ . (44)

A ratio of estimate differences equal to 1 means that EM algorithm has converged.

In Fig. 6, at moderate SNR (Es/N0 = 10dB), we observe that CL-EM needs a dozen of iterations

to converge; however, it is at least twice faster than NCD-EM under similar conditions. Furthermore,

with different numbers of taps in the channel, CL-EM always converges with almost the same number of

iterations. However, NCD-EM convergence speed depends on the number of channel taps. This result is

consistent with the theoretical analysis.

In Fig. 7, at high SNR (Es/N0 = 20dB), we can see that CL-EM always converges from the second iter-

ation (the first iteration includes a pilot-based estimation). As expected from (32), the rate of convergence

of CL-EM is almost zero for high SNR.

The theoretical analysis of convergence and complexity accomplished in section IV-C assumes high

SNR. Good results are also measured at low SNR as can be seen in Fig. 6. For 9 taps, the ratio of number

of iterations between CL-EM and NCD-EM is about 20% and the complexity ratio is about 69%. These

ratios are 25% and 61% respectively for a channel with 6 taps.

According to section IV-C, the complexity of CL-EM should be about 41% of NCD-EM. This ratio is

obtained with the assumption that NCD-EM converges after L iterations which is underestimated. When

considering MSE performance, in Fig. 4, NCD-EM achieves CRB after 3L iterations. Thus, the ratio

of overall complexities between CL-EM and NCD-EM is actually 14%. Concerning BER performance,

as shown in Fig. 5, NCD-EM needs 18 iterations to achieve the same performance as CL-EM with
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only 4 iterations and the ratio of overall complexities is approximately 55%. However, in the iterative

OFDM receiver, the soft demapping and decoding procedures are also included in every iteration. If we

consider these additional processes, the iterative receiver with CL-EM channel estimator will be much less

complex than that with NCD-EM channel estimator. Therefore, CL-EM algorithm has a better performance-

complexity trade-off.

VII. CONCLUSIONS

We have derived EM based iterative algorithms for the estimation of the channel impulse response in a

coded OFDM system and compared the CL-EM algorithm using the classic complete data with the NCD-

EM algorithm where the complete data is obtained via decomposing noise and observation components.

The CRB for a coded OFDM system has also been established as a lower bound for MSE performance.

Theoretical analysis shows that the convergence rate of CL-EM is almost zero at high SNR, while that of

NCD-EM depends on the number of channel taps and the choice of noise variance factors. Taking into

account the complexity per iteration, CL-EM is less complex than NCD-EM for all linear modulations at

the same error rate performance. Thus, CL-EM is an excellent OFDM channel estimator with a reasonable

complexity.
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APPENDIX A

DERIVATION OF (16)

Using (13), we get

p (Z|A,h) =
1

(2πσ2)N
exp

{
− 1

2σ2

L−1∑
l=0

‖Zl − Alhl‖2

}
(A-1)

and

log p (Z|A,h) = − 1

2σ2

L−1∑
l=0

‖Zl − Alhl‖2 − γ. (A-2)
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Using (15) and (A-2) and neglecting the constant number γ which will not impact the subsequent partial

derivative, we get the auxiliary function of NCD-EM:

Q
(
h|h(i)

)
=
∑
A

∫
Z

− 1

2σ2

L−1∑
l=0

‖Zl − Alhl‖2 P
(
Z, A |Y,h(i)

)
dZ. (A-3)

In (A-3),

L−1∑
l=0

‖Zl − Alhl‖2 =
L−1∑
l=0

N−1∑
k=0

|Zk,l − ak,lhl|2 =
L−1∑
l=0

N−1∑
k=0

|Zk,l|2 − 2�e
{
Zk,la

∗
k,lh

∗
l

}
+ |ak,lhl|2. (A-4)

Substituting (A-4) into (A-3), we get

Q
(
h|h(i)

)
= A + B + C, (A-5)

where

A = − 1

2σ2

∑
A

∫
Z

L−1∑
l=0

N−1∑
k=0

|Zk,l|2 P
(
Z, A |Y,h(i)

)
dZ, (A-6a)

B =
1

2σ2

∑
A

∫
Z

L−1∑
l=0

N−1∑
k=0

2�e
{
Zk,la

∗
k,lh

∗
l

}
P
(
Z, A |Y,h(i)

)
dZ, (A-6b)

C = − 1

2σ2

∑
A

∫
Z

L−1∑
l=0

N−1∑
k=0

|ak,lhl|2 P
(
Z, A |Y,h(i)

)
dZ. (A-6c)

Since the channel parameter h is not contained in (A-6a),
∂A
∂h

= 0 ; the second item (A-6b) can be

transformed as

B =
1

2σ2

L−1∑
l=0

N−1∑
k=0

2�e

{
h∗

l

∑
A

∫
Z

Zk,la
∗
k,l P
(
Z |A,Y,h(i)

)
P
(
A |Y,h(i)

)
dZ

}

=
1

2σ2

L−1∑
l=0

N−1∑
k=0

2�e

{
h∗

l

∑
A

E
{
Zk,l|A,Y,h(i)

}
a∗

k,l P
(
A |Y,h(i)

)}
, (A-7)

where

E
{
Zk,l|A,Y,h(i)

}
=

∫
Z

Zk,l P
(
Z |A,Y,h(i)

)
dZ. (A-8)

From (12) and (13), Zk,l and ak,l only depend on the kth row of A, denoted as ak = (ak,0, · · · , ak,l, · · · , ak,L−1).

Thus, (A-7) can be written as

B =
1

2σ2

L−1∑
l=0

N−1∑
k=0

2�e

{
h∗

l

∑
ς

E
{
Zk,l|ak = ς,Y,h(i)

}
ς∗l P
(
ak = ς |Y,h(i)

)}
, (A-9)
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where the vector ς represents a possible value of vector ak and ςl is the lth component of ς . With (12),

(13) and (A-8), we get (17). Furthermore, with the same notations, the item (A-5) can be written as

C = − 1

2σ2

L−1∑
l=0

N−1∑
k=0

∑
A

∫
Z

P
(
Z |A,Y,h(i)

) |ak,lhl|2P
(
A |Y,h(i)

)
dZ

= − 1

2σ2

L−1∑
l=0

N−1∑
k=0

∑
A

|ak,lhl|2P
(
A |Y,h(i)

)
= − 1

2σ2

L−1∑
l=0

|hl|2
N−1∑
k=0

∑
ς

|ςl|2P
(
ak = ς|Y,h(i)

)
. (A-10)

Substituting (A-9) and (A-10) into (A-6), we get the auxiliary function for NCD-EM as in (16).

APPENDIX B

DERIVATION OF (29)

In (28),

log p (X,Y|Y,hc) = log p (X|Y,hc) = log p (X,Y|hc) − log p (Y|hc) . (B-1)

In (B-1), considering the independence between the equiprobable transmitted data and the channel param-

eters, we have

log p (X,Y|Y,hc) = log
1

M
p (Y|X,hc) − log p (Y|hc) . (B-2)

Substituting (B-2) into (28), we obtain

D11H (hc|hc) =EX

{∥∥∥∥ ∂

∂hc
log p (Y|X,hc)

∥∥∥∥
2
∣∣∣∣∣Y,hc

}
+ EX

{∥∥∥∥ ∂

∂hc
log p (Y|hc)

∥∥∥∥
2
∣∣∣∣∣Y,hc

}

− 2�e

{
EX

{
∂

∂hc
log p (Y|X,hc)

[
∂

∂hc
log p (Y|hc)

]†∣∣∣∣∣Y,hc

}}
. (B-3)

For the first item in (B-3), the expectation can be written as

EX

{∥∥∥∥ ∂

∂hc
log p (Y|X,hc)

∥∥∥∥
2
∣∣∣∣∣Y,hc

}
=
∑
Xj

P (Xj|Y,hc)

∥∥∥∥ ∂

∂hc
log p (Y|Xj,h

c)

∥∥∥∥
2

, (B-4)

where j enumerates all possible symbol sequences Xj of length N . For coded transmission, the log-

likelihood function log p (Y|hc) can be written as [21]:

log p (Y|hc) = log
∑
Xj

P (Xj) p (Y|Xj, hc) . (B-5)
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Differentiating (B-5) yields

∂

∂hc
log p (Y|hc) =

∑
Xj

P (Xj) p (Y|Xj, hc)

p (Y, hc)

∂

∂hc
log p (Y|Xj, hc) . (B-6)

Making use of Bayes’ rule, we obtain

P (Xj) p (Y|Xj, hc)

p (Y, h)
= P (Xj|Y, hc) . (B-7)

With (B-6), we get

∂

∂hc
log p (Y|hc) =

∑
Xj

P (Xj|Y,hc)
∂

∂hc
log p (Y|Xj,h

c) . (B-8)

Using (B-8) yields

EX

{∥∥∥∥ ∂

∂hc
log p (Y|hc)

∥∥∥∥
2
∣∣∣∣∣Y,hc

}
=

∥∥∥∥∥∥
∑
Xj

P (Xj|Y,hc)
∂

∂hc
log p (Y|Xj,h

c)

∥∥∥∥∥∥
2

(B-9)

and

2�e

{
EX

{
∂

∂hc
log p (Y|X,hc)

[
∂

∂hc
log p (Y|hc)

]†∣∣∣∣∣Y,hc

}}

= 2�e

⎧⎪⎨
⎪⎩
⎡
⎣∑

Xj

P (Xj|Y,hc)
∂

∂hc
log p (Y|Xj,h

c)

⎤
⎦

†∑
Xj

P (Xj|Y,hc)
∂

∂hc
log p (Y|Xj,h

c)

⎫⎪⎬
⎪⎭

= 2

∥∥∥∥∥∥
∑
Xj

P (Xj|Y,hc)
∂

∂hc
log p (Y|Xj,h

c)

∥∥∥∥∥∥
2

. (B-10)

With perfect APP (high SNR),

∑
Xj

P (Xj|Y,hc)

∥∥∥∥ ∂

∂hc
log p (Y|Xj,h

c)

∥∥∥∥
2

≈
∥∥∥∥∥∥
∑
Xj

P (Xj|Y,hc)
∂

∂hc
log p (Y|Xj,h

c)

∥∥∥∥∥∥
2

. (B-11)

Substituting (B-4), (B-9) and (B-10) into (B-3) and using (B-11), we get (29).

APPENDIX C

DERIVATION OF (34)

In (33),

log p (Z,A|Y,hc) = log p (Z|A,hc) − log p (Y|hc) + log p (Y|Z,A,hc) + log p (A) . (C-1)
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With (13), Y is completely known from Z, thus
∂

∂hc
p (Y|Z,A,hc) = 0; since p (A) does not depend on

hc, it will not impact the subsequent partial derivative. Therefore,

D11H (hc|hc) =E(Z,A)

{∥∥∥∥ ∂

∂hc
log p (Z|A,hc)

∥∥∥∥
2
∣∣∣∣∣Y,hc

}
+ E(Z,A)

{∥∥∥∥ ∂

∂hc
log p (Y|hc)

∥∥∥∥
2
∣∣∣∣∣Y,hc

}

− 2�e

{
E(Z,A)

{
∂

∂hc
log p (Z|A,hc)

[
∂

∂hc
log p (Y|hc)

]†∣∣∣∣∣Y,hc

}}
. (C-2)

Using (12) and (13), we get

p (Z|A,hc) ∝ exp

{
− 1

2σ2

L−1∑
l=0

1

βl

‖Zl − Alh
c
l‖2

}
. (C-3)

Thus,

∂

∂hc
log p (Z|A,hc) =

1

2σ2

[
1

β0

(Z0 − A0h
c
0)

† A0, · · · ,
1

βL−1

(
ZL−1 − AL−1h

c
L−1

)†
AL−1

]T

=
1

2σ2

[
1

β0

Nc †
0 A0, · · · ,

1

βL−1

Nc †
L−1AL−1

]T

. (C-4)

Using (B-8), we also have

∂

∂hc
log p (Y|hc) =

1

2σ2

∑
Xj

P (Xj|Y,hc)ΩTdiag (Xj)
T [Y∗ − diag (Xj)

∗ Ω∗hc∗]

=
1

2σ2

∑
Aj

P (Aj|Y,hc)
(
Nc †Aj

)T
=

1

2σ2

∑
Aj

P (Aj|Y,hc)
[
Nc †Aj,0, · · · ,Nc †Aj,L−1

]T
, (C-5)

where Aj = Ωdiag (Xj). Substituting (C-4) and (C-5) into (C-2) and considering the perfect APP (high

SNR), we get

E(Z,A)

{∥∥∥∥ ∂

∂hc
log p (Z|A,hc)

∥∥∥∥
2
∣∣∣∣∣Y,hc

}
=

1

2σ2
NEdiag (β)−1 , (C-6)

E(Z,A)

{∥∥∥∥ ∂

∂hc
log p (Y|hc)

∥∥∥∥
2
∣∣∣∣∣Y,hc

}
=

1

2σ2
NEIL (C-7)

and

2�e

{
E(Z,A)

{
∂

∂hc
log p (Z|A,hc)

[
∂

∂hc
log p (Y|hc)

]†∣∣∣∣∣Y,hc

}}
≈ 2

2σ2
NEIL. (C-8)

Substituting (C-6), (C-7) and (C-8) into (C-2), we get (34).
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TABLE 1

NUMBER OF COMPLEX MULTIPLICATIONS OF CL-EM AND NCD-EM IN ONE ITERATION (QUADRATURE AMPLITUDE MODULATION)

CL-EM NCD-EM
“
Ω†R(i)∗

N×NΩ
”−1

Ω† ˜diag (X)(i)†Y N × (L2 + 2L + 1) +
4

3
L3 + L2

Tr(R(i)
N×N )h(i) L

Ω† ˜diag (X)(i)†Y N × (L + 1)

Ω†R(i)
N×NΩh(i) N × (2L + 1)

Total N × (L2 + 2L + 1) +
4

3
L3 + L2 N × (3L + 2) + L
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TABLE 2

NUMBER OF COMPLEX MULTIPLICATIONS OF CL-EM AND NCD-EM IN ONE ITERATION (PHASE MODULATION)

CL-EM NCD-EM

1

EN
Ω† ˜diag (X)(i)†Y N × (L + 1) + L

(1 − 1

L
)h(i) L

1

ENL
Ω† ˜diag (X)(i)†Y N × (L + 1) + L

Total N × (L + 1) + L N × (L + 1) + 2L
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Fig. 1. Coded OFDM system model with the proposed EM based channel estimator. The initial estimate is obtained from pilot symbols

only, whereas the estimates in following iterations are obtained from both pilot and data symbols.
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Fig. 7. Ratio of estimate differences for CL-EM and NCD-EM in coded OFDM at Es/N0=20dB. The number of pilot symbols is 16.

Modulation is 16-QAM.


