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Abstract SPARK is a subset of the Ada pro-
gramming language targeted at safety and security
critical applications. SPARK 2014 is a major evo-
lution of the SPARK language and toolset, that in-
tegrates formal program verification in the existing
development and verification processes, in order to
decrease the cost of verification for software subject
to certification constraints. We present industrial
case studies in three different certification domains
that show the benefits of using formal verification
with SPARK 2014.

Keywords System formal development, Verifica-
tion and validation, Certification and dependability

1 Introduction

SPARK 2014 is a major evolution of the SPARK
subset of Ada and associated formal verification
toolset with two main objectives: (i) being accessi-
ble to non-expert users, and (ii) being compatible
with testing.

In this paper, we describe how SPARK 2014
achieves these objectives, based on practical use of
the language and associated formal verification tool
GNATprove on three industrial case studies devel-
oped in the context of the Hi-Lite1 and openETCS2

research projects. The first case study by Mit-
subishi Electric R&D Centre Europe evaluates the
use of Ada and SPARK on a small subset of re-
quirements for the European Train Control Sys-
tems. The second case study by Astrium Space

1http://www.open-do.org/projects/hi-lite/
2Part of this work was funded by the DGCIS (Grant No.

112930309) in the context of the ITEA2 project openETCS
http://openetcs.org/.

Transportation is an extensive evaluation of the
technology over a period of three years, consisting
in the re-development of various parts of a Flight
Control and Vehicle Management software. The
third case study by Altran compares the benefits
of the new technology w.r.t. previous version, on
the well-known Tokeneer case study in SPARK.

2 SPARK 2014

SPARK is a subset of the Ada programming lan-
guage targeted at safety and security critical ap-
plications. SPARK builds on the strengths of Ada
for creating highly reliable and long-lived software.
SPARK restrictions ensure that the behavior of a
SPARK program is unambiguously defined, and
simple enough that formal verification tools can
perform an automatic diagnostic of conformance
between a program specification and its implemen-
tation. The SPARK language and toolset for for-
mal verification has been applied for many years in
on-board aircraft systems, control systems, cryp-
tographic systems, and rail systems [3, 12]. The
new version SPARK 2014 builds on the new spec-
ification features added in Ada 2012 [2], so formal
specifications are now understood by the usual de-
velopment tools and can be executed.

2.1 Key Language Features

The most useful feature in SPARK 2014 is the abil-
ity to specify a contract on subprograms. Sub-
program contracts were popularized in the Design-
by-Contract approach [11] as a means to separate
responsibilities in software between a caller and a
callee. The callee’s precondition states the respon-
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sibility of its caller, while the callee’s postcondition
states the responsibility of the callee itself. For ex-
ample, the following contract for procedure Swap

specifies that it should be called with index pa-
rameters within the range of the array parameter,
and that Swap will ensure on return that the cor-
responding values in the array have been swapped.
Attribute Old in the postcondition is used to refer
to values on entry to the subprogram.

procedure Swap (A : in out Arr ; X, Y : I d x ) with
Pre ⇒ X in A’Range and Y in A’Range,
Post ⇒ A(X) = A(Y) ‘Old and A(Y) = A(X) ‘Old ;

New expressions make it easier to express con-
tracts. If-expressions and case-expressions are
the expression forms which correspond to the
usual if-statements and case-statements. Note that
an if-expression without else-part (if A then B)

expresses a logical implication of B by A.
Quantified expressions (for all X in A) and
(for some X in A) correspond to the mathemat-
ical universal and existential quantifications, only
on a bounded domain. Expression functions define
a function with a single expression, like in func-
tional programming languages. As expression func-
tions can be part of the specification of programs
(contrary to regular function bodies), they provide
a powerful way to abstract complex parts of con-
tracts.

The second most useful feature in SPARK 2014
(after contracts) is the ability to specify properties
of loops. A loop invariant expresses the cumulated
effect of the loop up to that point. For example,
the following loop invariant expresses that the ar-
ray A has been zeroed out up to the current loop
index J, and that the rest of the array has not been
modified. Attribute Loop_Entry is used to refer to
values on entry to the loop.

pragma Loop Invariant
( for al l K in A’Range⇒

( i f K ≤ J then
A(K) = 0

else
A(K) = A’Loop Entry(K) ) ) ;

2.2 Benefits of Executable Contracts

Traditionally, contracts have been interpreted quite
differently depending on whether they were used for
run-time assertion checking or for formal program
verification. For run-time assertion checking, con-
tracts have been interpreted as assertions on entry

and exit of subprograms. For formal program veri-
fication, assertions have typically been interpreted
as formulas in classical first-order logic. This was
the situation with SPARK prior to SPARK 2014.
Practitioners have struggled with this interpreta-
tion, which was not consistent with the run-time
assertion checking semantics [6].

SPARK 2014 reconciles the logic semantics and
executable semantics of contracts, so users can now
execute contracts, debug them like code, and test
them when formal verification is too difficult to
achieve. Furthermore, by keeping the annotation
language the same as the programming language,
users don’t have to learn one more language.

All the previously presented contracts and asser-
tion pragmas lead to run-time assertions. If a given
property is not satisfied at run time, an exception
is raised with a message indicating the failing prop-
erty, for example on the procedure Swap:

failed precondition from swap.ads:4

Another key benefit of executable contracts is
that they can be used by other tools working at the
level of code. For example, the CodePeer3 static
analysis tool uses contracts and assertion pragmas
to issue more precise messages. Most notably, this
allows also combining the results of formal verifi-
cation and testing, when only part of a program is
formally analyzed [7].

2.3 Key Tool Features

GNATprove is the formal verification tool that an-
alyzes SPARK 2014 code. It performs two different
analyses: (i) flow analysis of the program and (ii)
proof of program properties.

Flow analysis checks correct access to data in
the program: correct access to global variables and
correct access to initialized data. It is a fast static
analysis (analysis time typically comparable with
compilation time).

Proof is used to demonstrate that the program
is free from run-time errors, and that the specified
contracts are correctly implemented. It internally
generates mathematical formulas for each property,
that are given to the automatic prover Alt-Ergo4.
If Alt-Ergo manages to prove the formula in the

3http://www.adacore.com/codepeer
4http://alt-ergo.ocamlpro.com/
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given time, then the property is known to hold.
Otherwise, more work is required from the user to
understand why the property is not proved.

As proof requires interactions between the user
and the tool until the specification can be proved
automatically, the efficiency and the granularity at
which the tool can be applied are critical. For effi-
ciency, GNATprove uses a compilation-like model,
where only parts that are impacted by a change
need to be reanalyzed, and a fast generation of for-
mulas [9]. For convenient interaction, GNATprove
allows focusing on a single unit, a single subpro-
gram inside this unit, or even a single line inside
this subprogram.

A very useful feature of GNATprove to investi-
gate unproved properties is its ability to display the
paths in the program that lead to unproved prop-
erties. This path can be displayed in GPS5 or in
Eclipse6, the two Integrated Development Environ-
ments which support SPARK 2014. The user can
also change the parameters of the tool to perform
more precise proofs, at the expense of longer anal-
ysis time.

3 Train Control Systems

The openETCS European project aims at making
an open-sourced, open-proofs reference model of
ETCS (European Train Control System). ETCS
is a radio-based train control system aiming at uni-
fying train signaling and control over all European
countries. Organized in several levels, ETCS can
range from, at Level 0, a simple Automatic Train
Protection system monitoring train speed to, at
Level 3, a fully featured radio-based train control
system where trains inform a Radio Block Centre
about their location and receive Movement Author-
ities, using cab signaling instead of track-side sig-
naling.

We made some experiments with SPARK 2014
to see if one could formalize the ETCS System
Requirement Specification (SRS, “ERA UNISIG
SUBSET-026 ”). We should acknowledge that us-
ing SPARK 2014 for formalizing system require-
ments is a bit excessive and out of scope for the
language. We made nonetheless this formalization

5http://www.adacore.com/gnatpro/toolsuite/gps/
6http://www.adacore.com/gnatpro/toolsuite/gnatbench/

attempt because we wanted to give a formal se-
mantics to this system specification and some of
the content of the ETCS specifications is quite low-
level.

We made several experiments but due to space
constraints we will only detail one of them. The
complete code is available online7. This example is
the coding of step functions, or piecewise constant
functions, used in the Speed and distance monitor-
ing section (SRS §3.13). Such functions are used
to model for example speed restrictions along dis-
tance. One of our main goals is to model the merge
of two speed restrictions, taking at each point the
most restrictive (i.e. smaller) one.

To encode step functions, we used the following
data structure:

type Num Del imi te r s Range i s range 0 . . 10 ;
type Funct ion Range i s new Natu ra l ;
type De l im i t e r E n t r y i s record

De l im i t e r : Funct ion Range ;
Value : F l o a t ;

end record ;
type De l im i t e r V a l u e s i s array

( Num Del imi te r s Range ) of De l im i t e r E n t r y ;
type S t e p Fun c t i o n t i s record

Num Delim : Num Del imi te r s Range ;
Step : De l im i t e r V a l u e s ;

end record ;

A step function of type Step_Function_t can
have up to 11 steps separated by 10 delim-
iters, stored together with the initial value of
the step function (as first element of the ar-
ray) in component Step. Each delimiter of type
Delimiter_Entry contains the delimiter position
(Delimiter) and the associated constant value
(Value) for the function. The number of delim-
iters used is stored in component Num_Delim. We
defined several subprograms that query or update
step functions.

3.1 Formalization of Properties

We wanted to check full functional correctness of
this critical unit. We used contracts to express the
specifications of all subprograms.

For example, we specified that, given a
valid (i.e. with strictly increasing delimiters)
step function SFun and a point X, function
Minimum_Until_Point returns a value of the step
function (2) where the step function reaches its
minimum on the given domain (1).

7https://github.com/openETCS/model-evaluation/tree/
master/model/GNATprove-MERCE
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function Min imum Unt i l Po in t
( SFun : S t e p Fun c t i o n t ; X : Funct ion Range )

return F l o a t
with
Pre ⇒ I s V a l i d ( SFun ) ,
Post ⇒
−− ( 1 ) Returned v a l u e i s the minimum be f o r e X
( for al l i in

Num Del imiters Range ’ F i r s t . . SFun . Num delim ⇒
( i f X ≥ SFun . Step ( i ) . De l im i t e r then
Minimum Unt i l Po int ’ R e s u l t
≤ SFun . Step ( i ) . Value ) )

and
−− ( 2 ) Returned v a l u e i s a v a l u e o f the s t ep
−− f u n c t i o n b e f o r e X
( ( for some i in

Num Del imiters Range ’ F i r s t . . SFun . Num delim ⇒
(X ≥ SFun . Step ( i ) . De l im i t e r

and
( Min imum Unt i l Po int ’ R e s u l t

= SFun . Step ( i ) . Value ) ) ) ) ;

The most complex subprogram we specified is
Restrictive_Merge. We specified that, given two
valid step functions SFun1 and SFun2 without too
many delimiters, Restrictive_Merge generates a
step function Merge which is valid and contains all
the delimiters of SFun1 and SFun2 and also, for
each of those delimiters, the value of the Merge step
function is the minimum over both input step func-
tions.

Overall, the number of lines for contracts and
assertion pragmas (in particular loop invariants)
is about the same as the number of lines of
code. We could have simplified the contracts by
specifying that Is_Valid is a type invariant of
Step_Function_t, but this Ada feature is not yet
supported in SPARK 2014, although it is planned
for the future.

3.2 Formal Verification Results

The first goal of this experiment was to check if
SPARK 2014 was expressive enough to describe
the objects of the requirements: requirement text,
transition tables, breaking curve equations, etc.
Overall, we were quite satisfied, as we were able to
express most of the requirements in a formal way.
The very expressive data structures of SPARK 2014
(records, arrays, enumerations, etc.) were very
helpful compared to other specification languages
like B Method [1] (lacking usable record structures)
or ACSL [4] for C programs (lacking record with
variant part or bounded integers). We found that
it lead to quite readable specifications.

The second goal was to evaluate the automatic
proving capabilities of SPARK 2014 on some parts

of the specification. We were able to prove the com-
plete absence of run-time errors, plus the functional
contracts of all subprograms except the one of
Restrictive_Merge. In this procedure, the post-
condition and the loop invariant (added to be able
to prove the postcondition) could not be automat-
ically proved by Alt-Ergo. The main reason is that
the proof context is too big and Alt-Ergo gets lost in
all the possible quantifier instantiations. We have
checked that some parts of the loop invariant could
be automatically proved if the proof context was
manually pruned of irrelevant hypotheses. More-
over, we compiled and tested the contracts and as-
sertion pragmas, which increased our confidence in
their correctness.

3.3 Lessons Learned

We were rather pleased by the expression capabili-
ties of SPARK 2014, making specification and code
writing rather easy and, more importantly, clearer
for the reader. The ability inherited from Ada to
define new data types for specific ranges, which are
incompatible with other types, is crucial in this re-
gard.

Another important finding is that the code
should be written with proof in mind. For exam-
ple, function Minimum_Until_Point was initially
unprovable, because an early exit in a loop lead to
the formula

(∀ K.A(K − 1) < A(K)) ∧X < A(1)

→ (∀ K.K > 1→ X < A(K))

which requires support for induction in the auto-
matic prover, a feature still missing from most auto-
matic provers. As the early exit was not necessary
for correct behavior, it was sufficient to remove it
to achieve automatic proof with Alt-Ergo.

A third finding is that contracts that can be
automatically proved are not always the most
natural contracts, i.e. contracts a reviewer
would understand more easily. For example, for
Restrictive_Merge procedure, we would have pre-
ferred to write that the resulting function is the
minimum of both input functions for all possible
input values:

Post ⇒
( for al l i in Funct ion Range ⇒
( Get Va lue (Merge , i ) =

Min ( Get Va lue ( SFun1 , i ) , Get Va lue ( SFun2 , i ) ) ) ) ;

It would have been impossible to prove this con-
tract automatically, so we wrote instead that the
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resulting function is the minimum of both input
functions for all possible delimiter values, which is
logically equivalent and proved automatically:

Post ⇒
( for al l i in

Num Del imiters Range ’ F i r s t . .Merge .Num Delim ⇒
(Merge . Step ( i ) . Value = Min

( Get Va lue ( SFun1 , Merge . Step ( i ) . De l im i t e r ) ,
Get Va lue ( SFun2 , Merge . Step ( i ) . De l im i t e r ) ) ) ) ;

Ideally, the tool should allow users to manually
prove contracts that cannot be proved automati-
cally, like done for example in B Method tools.

Our last finding, not entirely surprising, is that
writing the correct loop invariant for a complex
loop is not an easy task, as we experienced it for
procedure Restrictive_Merge. It can require sev-
eral hours of work of skilled people, trained in the
proof environment. In such cases, the ability to
compile and test the loop invariant is very useful
to help “debug” the loop invariant.

Overall, we think that the programmer should be
trained in the proof environment, much like a pro-
grammer exploits feedback of debuggers and tests
to debug her program. Moreover, as a complete
proof of the program can be very costly, a proof
methodology must be defined to avoid spending too
much time on proofs that could be broken by future
code changes.

4 Flight Control and Vehicle
Management in Space

This case study was carried out as part of project
Hi-Lite as a means to evaluate the adequacy of
formal verification for future space programs. De-
tailed results have been published in [10].

A typical space flight program is made up of two
parts, both of which are considered in our case
study: Flight control (or more generally numeri-
cal command and control algorithm) and Mission
and Vehicle Management.

4.1 Numerical Command and Con-
trol Algorithms

Numerical command and control algorithms take as
input floating point values, perform some numerical
computations (using the classical basic mathemat-
ical operators such as additions, subtractions, mul-
tiplications, divisions, absolute values, trigonome-

try or operations on vectors and arrays, etc.) and
return floating point results. Such algorithms gen-
erally have a retro-action loop, i.e. internal states.

It is generally not possible to define interesting
functional contracts for such code. Indeed, the
functional contract of the equation “X := A * Y
+ Cos (Z)” is just itself (i.e. it is not possible
to specify in a more abstract way this equation).
Then, instead of defining functional contracts, the
objective on this kind of software is the proof of ab-
sence of run-time errors (such as division by zero)
and the correctness of variable ranges (such as, for
instance, a velocity shall always be between 0 and
25 km/s).

SPARK 2014 has been first experimented on a
solar wing management software (for a spacecraft
such as the ATV – Automated Transfer Vehicle).
This piece of code uses a mathematical library
whose implementation is not in SPARK 2014, im-
plying that it could not be formally proved, but
only tested. However, the interface of this mathe-
matical library is in SPARK 2014. The contracts
defined on the mathematical library can then be
used to prove the application’s code. For example:

function S in (X : T Floa t ) return T Floa t
with

Pre ⇒ X in −C 2Pi . . C 2Pi ,
Post ⇒ Sin ’ R e s u l t in −1 . 0 . . 1 . 0 ;

4.2 Mission and Vehicle Manage-
ment

The Mission and Vehicle Management of a space-
craft is described by the ECSS (European Cooper-
ation for Space Standardization) standard ECSS-
E-ST-70-01C “Space engineering – Spacecraft on-
board control procedures”. This standard defines
the general principles of an On Board Control Pro-
cedure (OBCP). An OBCP is in practice repre-
sented by a simplified programming language in-
terpreted on-board the spacecraft. This interpreter
is generally at the highest level of criticality of the
spacecraft. The implementation of this interpreter
in SPARK 2014 is table driven and relies greatly
on rich features of Ada such as generic packages
(allowing an easy customization of the code) and
discriminants (ensuring a strict typing of the code,
even in case of heterogeneous communication be-
tween components of the system).
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4.3 Formalization of Properties

The contracts defined on algorithmic code are
mainly related to the ranges of variables.

The contracts defined on mission and vehicle
management code have (among others) the objec-
tives of ensuring the permanent consistency of the
software tables, the permanent consistency between
the Mission and Vehicle Management function and
other functionalities (such as, for instance, the so-
lar wing management), some functional properties
such as mutual exclusion between executions of
some automated procedures are respected and the
absence of run-time errors.

A majority of the program could be formally an-
alyzed (1505 out of 2054 subprograms), although
some subprograms fell outside the boundary of
SPARK 2014. Subprograms that could not be an-
alyzed either used access types (a.k.a. “pointers”)
that are outside the language (87 subprograms),
or unchecked type conversions that are not veri-
fied (377 subprograms). The 377 subprograms us-
ing unchecked type conversions are very small sub-
programs defined in a library for reading external
inputs and could be validated by intensive test-
ing. The remaining unanalyzed subprograms used
features that are expected to be included in a fu-
ture version of the language: class wide types (53
subprograms), tagged types (81 subprograms) and
specific attributes (10 subprograms). These corre-
spond to Object Oriented Programming features,
allowing dynamic binding of subprograms depend-
ing on the type of objects at run time.

Component Size Pre Post Time
Library 694 34 39 233
Algorithms 795 8 2 653
Time 13 0 2 10
Variable 260 41 30 118
Variables 438 43 31 274
Events 249 16 17 371
Expressions 1253 93 79 1992
Parameters 75 0 1 279
Units 463 13 8 2921
Sequences 276 5 5 7803
OBCP 714 33 15 13705

Subprograms that were analyzed were first spec-
ified with a precondition and a postcondition. The
above table provides for each component: the num-
ber of lines of code (“Size”), the number of pre-
conditions (“Pre”), the number of postconditions

(“Post”) and analysis time in seconds (“Time”).

4.4 Formal Verification Results

All the contracts have been checked by dynamic
testing. This phase is quite classical, except for
the fact that preconditions and postconditions were
also tested. Then, GNATprove has been applied.
The following table provides for each type of checks,
their number and the number proved:

Features Checks Proved %
division check 22 22 100
overflow check 164 164 100
precondition 1410 1400 99
postcondition 369 344 93
range check 232 194 87
assertion 967 961 99
index check 184 46 25
discriminant check 2334 2327 99
loop initialization 14 12 86
loop preservation 14 14 100

These results are globally satisfactory, a quite
limited number of checks having not been proved.
All unproved checks were analyzed to determine
why they were not proved, which uncovered a few
limitations of the tool: some algorithmic func-
tions (e.g. trigonometric functions) are not com-
pletely known to GNATprove and therefore cannot
be used in proofs, GNATprove had some difficulties
to take into account rounding, GNATprove could
not prove non linear equations involving floating-
point values, GNATprove could not prove some in-
dex checks in discriminated record. The remaining
non proved checks were due to too complex subpro-
grams. These subprograms shall be split in several
smaller subprograms to be proved.

4.5 Lessons Learned

A precise process was followed for the development
of this case study: (1) writing of the contracts of
each subprogram, (2) development of the body and
of the tests, (3) test of the software with executable
contracts, and potentially fixes, (4) formal proof of
contracts. The errors detected in the testing phase
were in the code in 50% of the cases, and in the
contracts in the remaining 50%.

The first run of GNATprove was often not suffi-
cient to achieve 100% automatic proof. Investigat-
ing the failed proofs was sometimes very difficult.
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While errors in the code are generally quite easy
to find (as it is the classical activity of an engi-
neer), missing contracts or assertion pragmas were
almost always very difficult to detect without the
help of an expert in SPARK 2014. Moreover, con-
clusions on a tool limitation shall almost always be
confirmed by a senior expert on SPARK 2014.

The quality of the code has been dramatically
improved thanks to both executable contracts and
formal proof. The writing of contracts for testing
should become a natural activity of any software
developer. Understanding why a proof (which may
seem sometimes really obvious) does not work may
require the involvement of a SPARK 2014 expert.
The writing of effective contracts for formal proof
requires a dedicated training and sometimes the in-
volvement of an expert in SPARK 2014.

In order to efficiently use GNATprove in an in-
dustrial context, we think following points should
be improved: ability to prove generic units once (in-
stead of proving each instance like done currently),
need to use a sound model of floating-points instead
of real numbers and automatic generation of some
loop invariants.

5 Biometric Access to a Se-
cure Enclave

Tokeneer8 is a highly secure biometric software sys-
tem that was originally developed by Altran. The
system provides protection to secure information
held on a network of workstations situated in a
physically secure enclave. The Tokeneer project
was commissioned by the US National Security
Agency (NSA) to demonstrate the feasibility of de-
veloping systems to the level of rigor required by
the higher assurance levels of the Common Crite-
ria. The requirements of the system were captured
using the Z notation and the implementation was in
SPARK 2005. The original development artifacts,
including all source code, are publicly available.

During this study, the source code for Tokeneer
has been translated into SPARK 2014. The core
system now consists of approximately 10,000 lines
of SPARK 2014 code. There are also approximately
3,700 lines of supporting code written in Ada which
mimick the drivers to peripherals connected to the

8www.adacore.com/sparkpro/tokeneer

core system.

5.1 Converting SPARK 2005 to
SPARK 2014

For the majority of the code, translating
SPARK 2005 to SPARK 2014 was very straight-
forward since most of the original annotations map
directly to the new ones. This section will focus on
the more interesting occasions where the conversion
was non-trivial.

Often, it is convenient to introduce a function
which exists solely for the sake of proof and does
not contribute at all in the final executing pro-
gram. The constructs which achieve this function-
ality for SPARK 2005 and SPARK 2014 respec-
tively are proof functions and ghost functions. In
SPARK 2005, the behavior of a proof function was
defined with user rules, which are axioms expressed
in a special syntax and given to the proof system.
In SPARK 2014, this behavior is simply given by
the body of the ghost function.

The Global aspect has an additional mode
Proof_In in SPARK 2014 w.r.t. SPARK 2005.
This mode is used to specify global variables of a
subprogram which appear solely within contracts
and assertions. Therefore, the translation required
separating global variables of mode in that were
used exclusively inside annotations (translated as
Proof_In global variables), from those that were
used in code (translated as Input global variables).

Parts of the original code were specially anno-
tated to be ignored during formal verification, be-
cause they contained constructs which were out-
side the Ada subset supported by SPARK 2005.
As SPARK 2014 supports a bigger subset of Ada
than SPARK 2005, a lot of this code is now formally
analyzable. The two constructs most often encoun-
tered, which fall under this category, are string con-
catenation and array slices.

The information that values of variables respect
the constraints of their type is available for proofs
with the new toolset. This simplifies both the
work of the programmer and the code itself. In
SPARK 2005, it was necessary to add many lines
of assertions to repeat that the values of variables
and components are within the bounds allowed by
their type, as this information was lost inside loops.
The new tools are more sophisticated and preserve
more of the context.
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5.2 Formalization of Properties

The contracts that have been added in the Toke-
neer source code consist of information flow con-
tracts expressed as Depends aspects and functional
behavioral contracts expressed as Pre and Post as-
pects.

Aspect/Pragma Num. of occurrences
Global 197
Refined Global 71
Depends 202
Refined Depends 40
Pre 28
Post 41
Assume 3
Loop Invariant 10

The Depends aspects (not presented previously
for lack of space) facilitate flow analysis of the
code. Flow analysis detects improper initialization,
identifies ineffective assignments and ensures secure
flow of information.

The Pre and Post aspects enable the prover to
show that the code is free from run-time excep-
tions, such as buffer overflow or divide-by-zero and
assist in proving that key security properties are
guaranteed by the implementation.

In order to measure the expressiveness and prov-
ing power of the SPARK 2014 tools, a specific
package, on which functional behavior proof had
not been attempted, was selected and then fully
augmented with functional behavior annotations:
package admin. This package contains the state of
the administrator of the system and a set of oper-
ations that administrators can perform.

To illustrate how functional behavior con-
tracts were added, we will consider subroutine
OpIsAvailable of package admin. An adminis-
trator can be either a UserOnly, a Guard, an
AuditManager or a SecurityOfficer. Each type
of administrator has a set of predefined opera-
tions that it is allowed to perform. Function
OpIsAvailable takes as input an administrator
and a string that is read from the keyboard and
determines if this string corresponds to an opera-
tion available to the administrator. If the operation
is indeed available, then this operation is returned,
otherwise NullOp is returned.

The SPARK 2005 postcondition served only as a
test case. It ensured that if a non null operation was
returned and if that operation was OverrideLock

then the administrator was of type Guard. This an-
notation was incomplete since it did not specify any
other kind of valid combinations of administrator
types and their corresponding operations or under
which circumstances NullOp should be returned.
The SPARK 2005 tools proved all properties asso-
ciated with the non-augmented admin package but
a total of 12 user rules had to be provided. The ef-
fort associated with proving the completed version
of this postcondition would have been significant
and hence this was not attempted.

function Op I sA v a i l a b l e
(TheAdmin : T ; KeyedOp : Keyboard .DataT )
return OpAndNullT ;

with
Pre ⇒ I s P r e s e n t (TheAdmin ) ,
Post ⇒ ( for some Op in Opt ⇒

Str Comp (KeyedOp , Op)
and AllowedOp (TheAdmin , Op)
and Op I sAva i l a b l e ’ R e s u l t = Op)

xor Op I sAva i l a b l e ’ R e s u l t = NullOp ;

This SPARK 2014 Post aspect states that we have
two mutually exclusive cases. If there exists some
operation in Opt that matches the string read from
the keyboard and this operation is allowed for the
current administrator then the result of function
OpIsAvailable is this operation, otherwise, the re-
sult is NullOp.

5.3 Formal Verification Results

The original source code of Tokeneer was proven to
be free of run-time exceptions and some key secu-
rity properties were proven to hold but full func-
tional proof was not performed on the entirety of
the code.

The SPARK 2014 tools discharge all 24 verifi-
cation conditions associated with the augmented
admin package in a matter of seconds.

More than 95% of the checks that were associ-
ated with the converted code were automatically
discharged. The remaining 5% consisted of checks
that either derived from code that was previously
not analyzable (and hence no provision was in place
to assist in their provability) or required something
similar to the SPARK 2005 user rules to assist the
prover in discharging them (this can potentially
also be achieved through utilizing a combination
of pragmas Assert and Assume). The typical cases
that require additional assumptions are those on
which combinations of several non-trivial mathe-
matical transformations would have to be applied
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when performing a manual proof.

5.4 Lessons Learned

Thanks to the new toolset’s proving power, users
are no longer required to add intermediate cut-
points. In the Tokeneer case study, pragma Assert

did not have to be provided to facilitate proof.
However, it is hypothesised that its usage could im-
prove readability of the code since it would signify
that a certain property holds at a given point in
the code.

While augmenting package admin, it was noticed
that formulating the functional behavior annota-
tions based on the low level Z specifications was
very intuitive. This suggests that it might be possi-
ble for future projects to skip this step and directly
provide SPARK 2014 annotated specifications.

An interesting case of how executable semantics
affect the way code and annotations have to be
written was uncovered while attempting to prove
package AuditLog. Converting SPARK 2005 an-
notations into their SPARK 2014 equivalents in-
troduced several run-time checks that previously
did not exist. The extra checks are a byproduct
of the contracts and assertions being executable
(Section 2.2). Some of these checks were not au-
tomatically discharged. A more in-depth investi-
gation revealed that an invariant was missing from
the original specifications. This invariant described
the property of always using at least one log file
(UsedLogFile.Length >= 1)9.

When analyzing a single package in isolation, it
was easy to understand which verification condi-
tions were proved and which were not. However,
when more than one file was analyzed in a single
run, due to the magnitude of the output, it became
increasing complicated to retain supervision of both
individual and overall provability. Having a tool
that summarizes the results and informs about re-
maining undischarged checks would greatly assist.
For instance, this would enable users to focus their
efforts only on proving packages for which 100% au-
tomated proof was achievable and resort to testing
for the rest.

9www.open-do.org/wp-content/uploads/2013/05/
Industrial Case Studies Final Report.pdf

6 Common Findings and Dis-
similarities

Not surprisingly, the lessons learned in all three
case studies partly reflect the level of expertise in
Ada and SPARK of the engineers involved: first-
time experience with Ada and SPARK for the first
case study, extensive experience in previous ver-
sions of Ada and SPARK for the second case study,
member of the team developing GNATprove for the
third case study.

The three case studies confirm some good prop-
erties of SPARK 2014. One of the principal ob-
jectives of SPARK 2014 is to offer an expressive
language for formal verification. As stated by
Jonathan P. Bowen in Ten Commandments of For-
mal Methods [5], Thou shalt choose an appropriate
notation. The three case studies confirm that ex-
pressiveness is indeed perceived as an advantage of
SPARK 2014. It provides both rich data-structures
such as records and enumerations (Section 3) and
support for advanced coding structures such as
generic packages and discriminants (Section 4). It
is close enough to SPARK 2005 to allow an easy
translation of annotations but also supports con-
structs that were previously excluded from the lan-
guage (Section 5).

Tests remain an important means of gaining con-
fidence in a program’s specification and implemen-
tation, even when formal methods are involved. As
stated in Bowen’s ninth commandment of formal
methods, Thou shalt test, test, and test again. Ex-
ecutable contracts are a key language feature (see
Section 2.2) of SPARK 2014 as it allows to exe-
cute the contracts while testing. They were found
to be beneficial both to increase confidence in an-
notations (Section 3) and to improve overall code
quality (Section 4). What is more, the constraint
implied by executability of contracts does not seem
to be too important as additional checks introduced
by the verification of absence of run-time errors in
contracts on a project that had not be annotated
with this constraint in mind could be discharged
(Section 5).

Another objective of SPARK 2014 was to im-
prove the amount of proofs that could go through
automatically with respect to SPARK 2005. The
case study in Section 5 shows that obtaining auto-
mated proofs with SPARK 2014 requires smaller
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loop-invariant, as information about bounds of
variables is preserved, less user rules, as ghost func-
tions can now have bodies, and less user written
additional assertions.

The case studies also raise some usability issues.
SPARK 2014 strives to define a subset of Ada as
big as possible while remaining amenable to formal
verification. For example, pointers are excluded
but a library of containers adapted to formal spec-
ification is provided to alleviate this restriction [8].
The case studies show that both code and contracts
must also be adapted for formal proof to go through
automatically (Sections 3 and 4).

Determining why a proof doesn’t succeed is a re-
ally difficult task. Even if specific feedback can
be provided by the proof environment for a failed
proof in the form of an execution trace, the results
of the case-study show that there is room for im-
provement in that matter. For example, the tool
could provide inputs on which the annotation is
not verified. What is more, it appears that pro-
grammers should be trained to debug their proof
and annotations (Sections 3 and 4).

Finally, as stated in Bowen’s fourth command-
ment, Thou shalt have a formal methods guru on
call. If automated formal verification of run-time
errors is achievable by an implementer, the case
studies show that, as the desired properties become
more complex, their expression and their verifica-
tion may require the involvement of an expert (Sec-
tions 3 and 4).

7 Conclusion

Railway, space, and security are three domains sub-
ject to an important certification requirement that
implies costly verification processes. The three case
studies show that verification with SPARK 2014
can bring a solution to this problem thanks to an
expressive language, executable contracts, and im-
proved provability. Even if there is still room for
improvement in usability, the current toolset al-
ready allows integration of formal proofs into the
standard developer’s workflow.

References

[1] J.-R. Abrial. The B-Book: Assigning programs
to meanings. Cambridge University Press,
1996.

[2] J. Barnes. Ada 2012 Rationale. 2012.

[3] J. Barnes. SPARK: The Proven Approach to
High Integrity Software. Altran Praxis, 2012.

[4] P. Baudin, J.-C. Filliâtre, C. Marché,
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