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Abstract—In this paper, we consider the tracking of mobile
terminals based on the received signal strength (RSS) measured
from several base stations. The spatial correlation of the random
shadowing is exploited in order to improve the position tracking.
We define an auto-regressive (AR) model of the temporal evolu-
tion of the shadowing. This model allows for performing a joint
tracking of the position and the shadowing by applying a Rao-
Blackwellized (RB) particle filter approximating the posterior
probability distributions numerically. The simulation results show
that the tracking can be improved by considering sufficiently high
auto-regressive orders.

I. INTRODUCTION

Navigation tasks and fleet management are among the first
applications of positioning and tracking. These applications
have been diversified to include geo-localization of emergency
calls, network control, and a variety of location-based services.

Wireless networks have been considered as a supplement
or an alternative to the GPS solution for localizing mobile
terminals. Several position dependent properties of the radio
signals can be exploited and several solutions have been
developed [1].

The position tracking relies on the measurements obtained
from the radio signals or from the outputs of an inertial
navigation system (INS), and on a displacement model. It
performs the estimation of the hidden state vector composed
of the position and other parameters of interest.

In this paper, we focus on mobile tracking using the
RSS measurements. The obstacles in the propagation path
between a user equipment (UE) and a base station (BS) cause
attenuations in the form of slow fading or shadowing. The
shadowing is usually assumed to follow a spatially correlated
log-normal distribution [2][3]. As the UE moves, the spatial
correlation is transformed into a temporal one.

Several RSS-based algorithms have been proposed in order
to improve the position tracking in presence of random shad-
owing. In [4], a prediction of the shadowing, modeled by a
first order auto-regressive Gaussian process, is used along with
the RSS measurements for estimating position. This solution
is sub-optimal, and can be improved by using a probabilistic
approach.

Thus, our solution is based on Bayesian filtering, which
efficiently exploits the incoming measurements by recursively
updating the posterior probability distribution. The update is
performed by taking the shadowing as a part of the state vector,
whose stochastic process is no more Markovian. The transition

equations of this process are obtained by an auto-regressive
modeling of the shadowing evolution.

As a remark, an alternative approach was used in a general
context in [5], where the shadowing was considered as a mea-
surement noise and the temporal correlation was accounted for
in evaluating the likelihood function.

Recursive Monte Carlo methods, also known as particle
filters [6][7], allow for approximating the probability density
functions which are analytically untraceable because of the
non-linearity of the AR model and the RSS measurements with
respect to the position. More specifically, a Rao-Blackwellized
particle filter will be implemented where the part of the
state vector consisting of the position and its derivatives is
represented by particles and the shadowing part is tracked by
means of a Kalman filter. This solution has the advantage of
reducing the needed amount of particles.

This paper is organized as follows. In section II, the transi-
tion model describing the evolution of the state vector and the
observation model are presented. In section III, we introduce
the auto-regressive modeling of the shadowing evolution. The
RB particle filter for solving the tracking problem is presented
in section IV. In section V, we show that for a particular case
of a collinear trajectory and under an exponential correlation
function, the shadowing follows a first order AR(1) model.
Simulation results and conclusions are presented in sections
VI and VII, respectively.

II. SYSTEM MODEL

In this section, we describe the transition model of the
hidden state vector and the observation model. They allow
for computing the a priori and likelihood probabilities in the
Bayesian filtering processing, respectively.

A. Transition model

We define the kinematic vector ck at time kT , where k ∈
N and T is a time step, comprising the UE position xk =
[xk, yk]T and other kinematic parameters (e.g. velocity). This
vector is issued from a known Markov process of transition
probability p(ck|ck−1) and initial distribution p(c0).

We denote Ωk = [ε1(xk), · · · , εNBS
(xk)]T , where εi(xk) is

the shadowing value in decibel (dB) corresponding to the i-th
base station out of NBS . The shadowing is assumed invariant
in time for a fixed position.

The state vector sk is defined by

sk = [cT
k ,ΩT

k ]T . (1)



We can decompose the transition equation as

p(sk|s0:k−1) = p(ck|ck−1)p(Ωk|x0:k,Ω0:k−1) (2)

where s0:k−1 = [sT
0 , · · · , sT

k−1]
T , x0:k and Ω0:k−1 being

defined accordingly. In section III, we show that Ωk is
represented by an AR model, which allows for computing
p(Ωk|x0:k,Ω0:k−1).

B. Observation model

At time kT , the UE makes RSS measurements yk(dB)
from lk signals sent by multi-sectors base stations, the sectors
being created by limited-interference antenna diagrams. The
measurements vector is equal to

yk = fk(xk) + JkΩk + nk (3)

where fk is a deterministic empirical function of the path loss
that takes the antenna diagrams into account; Jk is an lk ×
NBS matrix where Jk(i, j) = 1 if the i-th measurement is
made on the j-th base station and 0 elsewhere; and nk is
a Gaussian error that arises from moving obstacles or non-
shadowing losses and is considered to be white with respect
to the time domain.

III. AUTOREGRESSIVE SHADOWING MODEL

In this section, we describe the evolution of the shadowing
as an AR model in the case of a single base station, and then
make the generalization for multiple base stations.

A. Shadowing AR model for a single base station

Here, we focus on the case where a single base station lies
in the system. For clarity reasons, the subscript of ε is dropped
in this section.

The correlation of the shadowing at times lT and mT is

E{ε(xl)ε(xm)} = σ2
shρ(‖xl − xm‖) (4)

where ρ is an isotropic correlation function, i.e., depends
only on the distance between the two positions. By definition
ρ(0) = 1.

Knowing the positions x0:k and prior to any observation,
[ε(x0), · · · , ε(xk)]T is a zero mean Gaussian distributed vector
of covariance matrix Rk, with Rk(l,m) = σ2

shρ(‖xl − xm‖).
We write Rk as follows:

Rk =
[

Rk−1 rk

rT
k σ2

sh

]
(5)

where the vector rk = E{[ε(x0), · · · , ε(xk−1)]T ε(xk)}.
Furthermore, p(ε(xk)|x0:k, ε(x0), · · · , ε(xk−1)) being a

Gaussian distribution, the process ε(xk) can be represented
by an order-k AR model AR(k)

ε(xk) = aT
k [ε(x0), · · · , ε(xk−1)]T + θk (6)

where
ak = R−1

k−1rk (7)

and θk is a zero mean Gaussian variable of variance σ2
θk

:

σ2
θk

= σ2
sh − rT

k R−1
k−1rk. (8)

In order to take all the previous states into account, the order
of the AR model increases with time. The matrix inversion
R−1

k can be computed recursively with low complexity by
using

R−1
k =

[
I −R−1

k−1rk

0 1

] [
R−1

k−1 0
0 1/σ2

θk

]
×

[
I 0

−rT
k R−1

k−1 1

]
. (9)

As a remark, the order of the AR process can be limited to
the p < (k + 1) previous states, R−1

k being replaced by the
inverse of the p × p lower right submatrix of Rk or by the
Schur’s complement of the (k − p + 1)× (k − p + 1) upper
left submatrix of R−1

k . Thus, if a sliding window approach
of depth p is considered, the Schur’s complement is of low
complexity as it doesn’t need any matrix inversion.

B. Shadowing AR model for multiple base stations

The shadowings of different base stations are cross-
correlated [8]. By considering a constant correlation coeffi-
cient, we can model the shadowing of the i-th base station by
a sum of two i.i.d. Gaussian random fields:

εi(xk) = αGFi(xk) + βGFc(xk) (10)

where α2+β2 = σ2
sh and GFc is common for all base stations.

The following cross-correlation properties are assumed:

E{GFi(xl)GFj(xm)} = 0.

E{GFi(xl)GFi(xm)} = ρ(‖xl − xm‖).
E{εi(xl)εj(xm)} = β2ρ(‖xl − xm‖).

Prior to any observation, Ω0:k is a zero mean Gaussian
distributed vector of covariance matrix Pk equal to

Pk =
[

Pk−1 Tk

TT
k σ2

shZ

]
(11)

where Tk = E{Ω0:k−1ΩT
k } and Z is the NBS ×NBS matrix

defined by

Z =


1 β2/σ2

sh · · · β2/σ2
sh

β2/σ2
sh

. . .
. . .

...
...

. . .
. . . β2/σ2

sh

β2/σ2
sh · · · β2/σ2

sh 1

 .

The Gaussian process Ωk can be represented by the AR(k)
model

Ωk = AT
k Ω0:k−1 + Θk (12)

where
Ak = P−1

k−1Tk (13)

and Θk is a zero mean Gaussian distributed vector of
covariance matrix Qk. Thus, the Gaussian distribution
p(Ωk|x0:k,Ω0:k−1), which is needed in order to determine the
transition equation (2), has a mean AT

k Ω0:k−1 and a covariance
matrix Qk.



From (5) and (11), Pk = Rk ⊗ Z where ⊗ denotes
the Kronecker product, which allows for computing P−1

k =
R−1

k ⊗ Z−1. Thus, the matrix Ak defined in (13) can be
computed with low complexity

Ak =
(
R−1

k−1 ⊗ Z−1
)
× (rk ⊗ Z)

= ak ⊗ I(NBS) (14)

where I(NBS) is the identity matrix of rank NBS . Similarly,
the covariance matrix Qk of Θk is equal to

Qk = σ2
shZ−TT

k P−1
k−1Pk = σ2

θk
Z. (15)

Thus, the transition probabilities of the shadowing process can
be computed with low complexity.

IV. BAYESIAN TRACKING IMPLEMENTATION

In this section, we present the Bayesian filtering adapted to
the AR model of the system and using Rao-Blackwellization.

A. Bayesian filtering

A Bayesian filtering consists of determining recursively in
time p(s0:k|y1:k) in order to apply a Bayesian estimator, e.g.
the MMSE estimator:

ŝk =
∫

skp(s0:k|y1:k)ds0:k (16)

where p(s0:k|y1:k) is computed recursively according to

p(s0:k|y1:k) = p(s0:k−1|y1:k−1)
p(sk|s0:k−1)p(yk|sk)

p(yk|y1:k−1)
. (17)

When an order-p AR process is considered, p(sk|s0:k−1) is
replaced by p(sk|sk−p:k−1).

B. Rao-Blackwellized particle filter

The shadowing evolution equation (12) and the measure-
ment equation (3) are non-linear with respect to xk making
the posterior density (17) untraceable analytically. Particle
filters allows for computing numerically the solutions, with a
complexity drawback. Indeed, the number of particles usually
must increase exponentially with the dimension of the state
vector. In our case, the dimension of the state vector is
increasing with the number of shadowing components used
in the tracking process.

We can remark that, conditionally on the knowledge of x0:k,
equations (12) and (3) are linear with respect to Ωk, which
can be tracked by a Kalman filter. Thus, we can reduce the
number of particles and limit the complexity of the filter by
applying a Rao-Blackwellization. This consists of computing
the posterior of a subset of the state vector analytically, in our
case with the Kalman filter.

At time (k − 1)T , if we assume that p(c0:k−1|y1:k−1)
is approximated by the set of weighted particles{
wi

k−1, c
i
0:k−1

}N

i=1
and that the Gaussian distribution

p(Ω0:k−1|xi
0:k−1,y1:k−1) = N(Mi

k−1,C
i
k−1) is known, then

the posterior distribution p(s0:k−1|y1:k−1) can be expressed
as

p(s0:k−1|y1:k−1)
= p(Ω0:k−1|x0:k−1,y1:k−1)p(c0:k−1|y1:k−1)
≈

∑
i wi

k−1N(Mi
k−1,C

i
k−1)δ(c0:k−1, ci

0:k−1)
(18)

where δ is the Kronecker delta function.
The posterior distribution p(s0:k|y1:k) at time kT can be

obtained in three steps.
1) Prediction step: The predictive distribution

p(s0:k|y1:k−1) can be written as

p(s0:k|y1:k−1)
= p(Ω0:k|x0:k,y1:k−1)p(c0:k|y1:k−1)
≈

∑
i wi

k−1p(Ωk|xk,xi
0:k−1,Ω0:k−1)N(Mi

k−1,C
i
k−1)×

p(ck|ci
k−1)δ(c0:k−1, ci

0:k−1).
(19)

A Monte Carlo approximation of this distribution is

p(s0:k|y1:k−1) ≈
∑

i wi
k−1N(Mi

k|k−1,C
i
k|k−1)×

δ(c0:k, ci
0:k).

(20)
where ci

k is drawn from p(ck|ci
k−1),

Mi
k|k−1 =

[
Mi

k−1

(Ai
k)T Mi

k−1

]
(21)

and

Ci
k|k−1 =

[
Ci

k−1 Ci
k−1A

i
k

(Ai
k)T Ci

k−1 (Ai
k)T Ci

k−1A
i
k + Qi

k

]
. (22)

Ai
k and Qi

k are obtained from equations (13) and (15) for
the trajectory xi

0:k.
2) Correction step: In this step, the observation yk is used

to compute p(s0:k|y1:k) by updating p(s0:k|y1:k−1).
The observation equation (3) is re-written as follows:

yk = fk(xk) + HkΩ0:k + nk (23)

where Hk = [0,Jk] of size lk × (k + 1)NBS .
Before being normalized, the weights are updated by

wi
k ∝ wi

k−1p(yk|xi
0:k,y1:k−1) (24)

where p(yk|xi
0:k,y1:k−1) is a Gaussian distribution of

mean fk(xi
k) + HkMi

k|k−1 and covariance HkCi
k|k−1H

T
k +

E{nknT
k }.

The vector Mi
k and matrix Ci

k are obtained by means of a
Kalman filter described as follows:

- Kalman gain:

Ki
k = Ci

k|k−1H
T
k (HkCi

k|k−1H
T
k + E{nknT

k })−1 (25)

- Mean correction:

Mi
k = Mi

k|k−1 + Ki
k(yk − fk(xi

k)−HkMi
k|k−1) (26)

- Covariance correction:

Ci
k =

(
I((k + 1)NBS)−Ki

kHk

)
Ci

k|k−1 (27)

When an order-p AR model is considered, it is sufficient to
store ci

k−p+1:k, the last p elements of Mi
k and the p×p lower

right submatrix of Ci
k.



3) Resampling step: In order to avoid the weights degener-
acy [6] due to the increase of the variance of the set

{
wi

k

}N

i=1
,

a resampling step is performed. Thus, some trajectories of
weak weights are eliminated and some of strong weights
repeated. We execute this step when the effective number
of particles Neff = 1/

∑
i(w

i
k)2 falls below a threshold.

Unfortunately, resampling causes a depletion of the history
due to the common past shared by some trajectories [9].

As a remark, when one small region is visited several
times during a window time fitting the AR model order, the
shadowings observations associated to this region are highly
correlated. The performance might be decreased if the number
of remaining distinct particles is not sufficient.

V. SPECIAL CASE OF COLLINEAR TRAJECTORIES

In this section, we consider collinear trajectories for the
sake of illustration. In practice, this allows for using a map-
restricted trajectory along with the presented technology. For
example, train geo-location, or car geo-location are examples
of applications. Of course, when a crossroad approaches, all
possible trajectories can be taken into account independently
in the particle filter, and selected according to the maximal
weights after crossing the intersection.

For Gaussian vectors, the precision matrix, i.e., the inverse
of the covariance matrix, explicitly contains the information
about the conditional independence of their components [10].
Let v = [v1, · · · , vn]T be a Gaussian vector of precision
matrix Λ, then

vi⊥vj |v i,j ⇔ Λi,j = 0

where ⊥ denotes the independence, and v i,j is v without vi

and vj .
Consider a set of L collinear points located on the x-axis

and verifying xj+1 > xj as shown in Fig. 1.

x
1

x
2 ... x

L

Fig. 1. A trajectory of collinear points.

Consider also an exponential correlation function of the
form

ρ(‖xl − xm‖) = e−γ‖xl−xm‖ (28)

where γ is a constant. In this case, it can be shown that the
precision matrix R−1

L of [ε(x0), · · · , ε(xL)]T is tridiagonal.

R−1
L =



a1 b1 0 · · · 0

b1 a2

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . aL−1 bL−1

0 · · · 0 bL−1 aL


(29)

As a result, the Gaussian process ε(xL) is an AR(1)
process. This can be deduced by looking at the last row of
R−1

L which has only two nonzero entries.

VI. SIMULATIONS

In this section we introduce the transition and the obser-
vation model scenarios assumed for the computer simulations
and show the results. We show the robustness of the algorithm
for a collinear trajectory with a varying speed. In order to
illustrate the benefit taken from higher AR model orders, we
also consider the case of a U-turn.

The motion of the UE is modeled by a simple linear Markov
process. The kinematic vector is ck = [xk, ẋk, yk, ẏk]T where
[ẋk, ẏk]T is the velocity vector. ck evolves according to the
following difference equation:

ck =

 1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 ck−1 +

 0 0
T 0
0 0
0 T

 (qk−1 + ek−1)

(30)
where we assume that qk−1 = [qx,k−1, qy,k−1]T is the
acceleration vector provided by an accelerometer and ek−1 is a
Gaussian distributed vector that accounts for the acceleration
estimation errors. We take the covariance of ek−1 equal to
(0.5m/s2)2I(2). We perform tracking with a map constraint,
where the trajectory belongs to a straight road with two lanes.

We use the model in (30) for tracking, while the trajectories
are generated according to the model developed in [11] which
takes into account a dynamic model of the vehicle, the driver’s
control decisions and the map of lanes. We consider the two
trajectories depicted in Fig. 2. Trajectory 1 is a straight line
with an average velocity of 57km/h and a maximum velocity
of 72km/h. Notice that the vehicle is accelerating at the
beginning. Trajectory 2 contains a turn and the average and
maximum velocities are 34km/h and 65km/h respectively.
The initial position is perfectly known.
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Fig. 2. The two traveled trajectories.

For the shadowing, the correlation function is the exponen-
tial one given by equation (28) with γ = ln(2)/dcorr and
dcorr = 50m. The standard deviation of the shadowing is
σsh = 8dB. The cross-correlation coefficient is equal to 0.5
and the coefficients of (10) are α = β = σsh/

√
2.

The Macro-cell system simulation baseline parameters de-
fined in [12] are used to compute the path loss as a function
of the UE position. The UE makes measurements with 4
base stations located at [0, 0]T , [1391, 1032]T , [−199, 1721]T

and [1589,−688]T . The measurement error vector is white in
time and Gaussian and has a covariance matrix E{nknT

k },



with E{n2
j,k} = 9dB2, E{ni,knj,k} = 0 if the two er-

ror components correspond to different base stations and
E{ni,knj,k} = 4.5dB2 if they correspond to different sectors
of the same base station.

In Fig. 3, the RMSE of the position is plotted vs time for
trajectory 1 and for a time step T = 0.4 seconds (s). These
results are obtained by means of Monte Carlo simulations
for 10 different sets of shadowing maps and for 50 trials per
set, where a set represents the shadowing maps attributed to
the different base stations. The Dead Reckoning (DR) curve
corresponds to the estimation of the position based on the
previous estimation and the acceleration only. In this case the
position error is accumulated over time. A great improvement
can be observed when the RB particle filter is used. Here, the
order-1 AR is optimal since the trajectory is collinear, but the
higher order AR simulation are not degraded. For the sake of
illustration, the RMSE curves when the shadowing is perfectly
known and when the shadowing is white are also drawn. We
see that tracking the shadowing improves the RMSE, but the
remaining imprecisions does not allow to remove its effect.

0 10 20 30 40 50
0

10

20

30

40

50

60

time(seconds)

R
M

S
E

(m
)

 

 

AR(1), T=0.4
DR, T=0.4
Zero Order, T=0.4
Known shadowing, T=0.4

Fig. 3. RMSE of the position for trajectory 1. The time step is T = 0.4 s.

For trajectory 2, the time step is T = 1 seconds and
the total duration is 30 seconds. Thus, an order equal to 30
is capable of taking into account all previous states. Fig. 4
shows the RMSE for this trajectory. After t = 16 seconds,
when the turning occurs, the RMSE of AR(10) and AR(30)
is lower than for AR(1). Indeed, the adjacency of the two
parts of the trajectory improves the estimation that exploits
the shadowing correlation. Few seconds after, the RMSE of
AR(10) increases. This is explained by the fact that the AR
order is not sufficient to exploit the shadowing correlation in
the actual measurements and in the measurements obtained
at the beginning of the trajectory. By exploiting previous
measurements, the location tracking can be highly improved.
Further improvement can be obtained from the a priori infor-
mation brought by a fingerprinting map of the shadowing.

VII. CONCLUSIONS

In this paper, we introduced the auto-regressive modeling of
the temporal evolution of the shadowing. We used this model
to implement the Rao-Blackwellized particle filter, where we
took the shadowing as a part of the state vector. To exploit
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Fig. 4. RMSE of the position for trajectory 2 and for different AR orders.
The time step is T = 1 s.

all the previous measurements, the order of the AR model
increases with time, which involves increasing complexity
and memory needs. This order can be limited according to
several factors, such as complexity and memory limitations,
the a priori knowledge of the itinerary, the map constraints,
the update time step or the accuracy of INS information. We
have shown the application to the particular case of straight
trajectories, which is relevant for train position estimations, or
map-based car navigation system.
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