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Abstract. In this work, we present an on-board solution for train posi-
tion tracking that can be used in cases of GPS failures and that does not
suffer from the error accumulation problem of Dead Reckoning (DR). It is
based on Received Signal Strength (RSS) measured in radio communica-
tion systems by several mobile stations having antennas placed on top of
different carriages of the train. As the RSS is affected by the slow fading
or shadowing, both the position and the shadowing are jointly tracked.
We estimate the shadowing atlas consisting of the shadowing maps along
the railway of the different base stations. The proposed solution applies
Bayesian filtering for efficiently processing the observations.
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1 Introduction

Reliable and accurate knowledge of train position and speed plays an important
role in avoiding collisions and optimizing the traffic by increasing lines capacities.
In classical train control systems, localization is based on track side equipments.
The new trends in design of train control systems consist of integrating on-
board solutions so as to reduce the need of track-side equipments with their
inherent roll-out and maintenance costs and to simplify the deployment of new
technologies and configuration changes.

Several methods for on-board position measurements are discussed in [1].
These methods are tachometers, Inertial Navigation Systems (INS) (e.g. ac-
celerometers and gyroscopes), Doppler effect and GPS (and possibly other Global
Navigation Satellite Systems such as GALILEO).

The GPS solution provides a good precision when sufficient non-obstructed
satellite signals are available. When the GPS fails (e.g. tunnels, valleys, some
urban areas), other solutions are required. In [2], dead reckoning the train posi-
tion from on-board sensors (odometers and accelerometers) is performed during
the GPS failures where a data fusion approach based on Kalman filtering is
developed. All the above-mentioned technologies but the GPS are DR as the
current position is estimated based on a previous position and an estimation
of the traveled distance over elapsed time. The performance of DR deteriorates
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with time due to error accumulation and a way is needed to compensate this
error especially if the GPS failure lasts for a long time duration.

In this paper, we consider the use of RSS measurements in radio communi-
cation systems for on-board train positioning. A radio communication system
can be either dedicated for communication between the train and the railway
regulation control centers (e.g. GSM-R) or a public network offering services to
passengers. This solution does not suffer from error accumulation of DR and can
be integrated with on-board sensors that can give more information and improve
the accuracy.

The RSS measurements are affected by the slow fading or shadowing. The
shadowing can be divided into two parts: A time variant part caused by moving
obstacles (e.g. a nearby train) and a time invariant one which is function of
the position. In the following, we call shadowing the time invariant part. The
shadowing in decibels (dB) is modeled by a Gaussian random process along the
railway as it is spatially correlated [3] and log-normally distributed [4]. For one
base station, we call this process a shadowing map. The shadowing of several base
stations is also cross-correlated as reported in [7]. We define the shadowing ‘atlas’
being the collection of the maps of the different base stations. The knowledge of
the shadowing improves the position estimation and is useful for communication
purposes (e.g. handover anticipation).

The train position and the shadowing are jointly tracked. For this purpose,
we apply Bayesian filtering for efficiently fusing the incoming measurements
by recursively updating the posterior probability distributions of the position
and the atlas. Due to the non-linearities encountered, sequential Monte Carlo
methods known as particle filters [5] will be implemented for approximating the
probability density functions.

This paper is organized as follows. In Section 2, the motion model describing
the evolution of the train position and the RSS observation model are presented.
In Section 3, we introduce the shadowing atlas and show how it can be updated
based on RSS measurements when the train position is known. In Section 4,
Bayesian filtering and particle filters implementation are presented. Simulation
results and conclusions are presented in Sections 5 and 6.

2 System Model

In this section, we describe the motion model of the train and the RSS observa-
tion model. They allow for computing the a priori and likelihood probabilities
in the Bayesian filtering processing, respectively.

2.1 Motion Model

The train is constrained to move on a known railway track and the position is
defined as the Cartesian coordinate of a reference point belonging to the train.
The rail can be seen as a parametric curve of one parameter that we call rail
coordinate. We assume that the length of the rail (in meters (m)) between two
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rail coordinates r1 and r2 is equal to the absolute value of r1 − r2. The train
position can be described by the rail coordinate as there is a mapping to the
Cartesian coordinates. The train speed is the derivative of the rail coordinate.

At time kT , where k ∈ N and T is a time step, we define the state vector sk

comprising the scalar rail coordinate rk, the scalar speed vk and possibly other
kinematic parameters (e.g. acceleration).

sk is issued from a known Markov process of initial distribution p(s0) and
transition probability p(sk|sk−1).

2.2 RSS Observation Model

We consider several mobile stations having their antennas placed on the top
of different carriages of the train for a better sensitivity and penetration losses
avoidance. The antennas are spaced enough (several meters to several tens of
meters depending on the train size) so that the shadowing values are different at
two antennas’ positions for the same time instant. We denote NMS the number
of these antennas. RSS measurements are made in order to estimate the signal
attenuation due to path loss and shadowing. They are usually obtained by low-
pass filtering the received power in order to remove the small scale fading. The
used filter must be sufficiently narrow in bandwidth to remove the multipath
fluctuations, yet sufficiently wide to track the shadow fading.

A simple filtering solution is the sample-average which returns the average
of a set of discrete time samples in dB. In [8], simulations in a flat Rayleigh
environment with a carrier frequency of 900MHz show that a root mean square
error of less than 1.6dB can be achieved by using the sample-average estimator.
This result is obtained by considering a shadowing standard deviation of σsh =
10dB and an exponential correlation function:

E{ε(x1)ε(x2)} = σshexp(−ln(2)‖x1 − x2‖/dcorr) (1)

where ε(xi) is the shadowing at position xi and dcorr = 346m which is the value
estimated in [3] for suburban areas. Under a Rician fading, the error is smaller
as the variance of the Rice distribution decreases with the ratio of the specular
power to the scattered power. As mentioned in [9], the error can be reduced if
the channel bandwidth is sufficiently wide so that several paths can be resolved
or if the mobile station has multiple nearby antennas (these antennas are spaced
of the order of the wavelength and deliver one RSS measurement as they are
affected by the same path loss and shadowing values). The remaining error after
filtering is nearly Gaussian distributed.

Fast fading of train radio channels has been investigated in [10] . The mea-
surements showed that only a weak multipath propagation exists and the radio
environment is mainly rural. The rural area model is also adopted for tunnels.
These studies have also shown that a significant line of sight component exists
especially when the base stations are on the track side.

We model the RSS measured by a mobile station having the antenna at
position x as

y = f(x) + ε(x) + n (2)



4 RSS Train Tracking and Shadowing Estimation

where f is a deterministic path loss function, ε is the shadowing and n is a
Gaussian error gathering the time variant shadowing, average power estimation
and other non-shadowing errors. Many general path loss prediction models for
different deployment environments have been developed. We don’t investigate
here the path loss model that we assume to be know. In [10], a standard deviation
of the shadowing between 1.2 and 3.7dB is reported over several railway lines.

3 Shadowing Atlas

3.1 Definition

For one base station, the shadowing is represented by a vector of real values where
the rail is discretized and each vector entry corresponds to a discrete position.
We call this vector a shadowing map. To obtain the value of the shadowing at
an arbitrary position of the rail, we apply a piecewise constant interpolation by
assigning the same value of the nearest point having an entry in the shadowing
map. In fact, this shadowing map is not perfectly known and can be described
by a Gaussian random vector of known mean and covariance. For several base
stations, we define the shadowing atlas as being a collection of the shadowing
maps obtained by a concatenation of the vectors.

We denote Lmap the size of the shadowing map vector and Latlas = NBS ×
Lmap the size of the atlas where NBS is the number of base stations encountered
along the railway. The size of the atlas covariance matrix is a large Latlas×Latlas

sparse matrix thanks to the low shadowing spatial correlation between distant
positions. We can also reduce NBS and Lmap by considering an atlas for a sector
of the railway.

3.2 Atlas Update

Here, we describe how to update the atlas based on RSS measurements made at
a known train position.

At time kT , we denote lk the number of RSS measurements made by the
NMS train antennas. The positions of the antennas can be easily deduced from
the rail coordinate rk. The observation vector of size lk is

yk = fk(rk) + Σk(rk) + nk

= fk(rk) + HkΛ + nk (3)

where fk(rk) and Σk(rk) are the path loss vector and the shadowing vector
respectively, nk is the Gaussian error process, Λ is the shadowing atlas vector of
size Latlas, and Hk is an lk×Latlas matrix satisfying Hk(i, j+Lmap×(l−1)) = 1
if the ith measurement is made with lth base station and the corresponding
shadowing has the jth entry in the map vector, and otherwise it is equal to zero.

Denote Mk−1 and Ck−1 the mean and covariance of Λ at time (k − 1)T
respectively and assume that the process nk is white with respect to time. The
observation yk, which is a linear function of Λ, is used to update Mk and Ck
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by means of a linear Minimum Mean Square Error (MMSE) estimator [6] as
follows:

Mk = Mk−1 + Qk(yk − fk(rk)−HkMk−1) (4)
and

Ck = Ck−1 −QkHkCk−1 (5)
where Qk is the gain factor given by:

Qk = Ck−1HT
k (E{nknT

k }+ HkCk−1HT
k )−1. (6)

In the next section, we describe how to perform this estimation when the
position is not perfectly known.

4 Bayesian Tracking Solution

In this section, we present the Bayesian filtering adapted to our tracking problem
and its implementation using particle filters.

4.1 Bayesian Filtering

A Bayesian filtering consists of determining recursively in time the posterior
distribution p(s0:k|y1:k,u1:k), where we denote by z0:k = [zT

0 , · · · , zT
k ]T for any

sequence zk, yk is the RSS observation vector and u1:k is an observation vec-
tor that might be obtained from INS sensors. The goal is to apply the MMSE
estimator:

ŝk =
∫

skp(s0:k|y1:k,u1:k)ds0:k. (7)

This posterior distribution allows to compute p(Λ|y1:k,u1:k) as follows:

p(Λ|y1:k,u1:k) =
∫

p(Λ|s0:k,y1:k)p(s0:k|y1:k,u1:k)ds0:k (8)

where p(Λ|s0:k,y1:k) is a Gaussian distribution whose parameters can be esti-
mated using the linear MMSE estimator described previously.

The distribution p(s0:k|y1:k,u1:k) is computed recursively according to

p(s0:k|y1:k,u1:k) ∝
p(s0:k−1|y1:k−1,u1:k−1)p(sk|sk−1)p(uk|sk−1, sk)p(yk|s0:k,y1:k−1).

(9)

By assuming that the error process nk is white, the observations at different
instants are independent given the atlas:

p(yi,yj |si, sj ,Λ) = p(yi|si,Λ)p(yj |sj ,Λ). (10)

Thus, a possible computation of p(yk|s0:k,y1:k−1) is

p(yk|s0:k,y1:k−1) =
∫

p(yk|Λ, sk)p(Λ|s0:k−1,y1:k−1)dΛ (11)

Equations (7) and (8) are analytically untraceable since the observation equa-
tion (3) is non-linear with respect to rk and Hk depends on rk. A solution based
on particle filters [5], which apply sequential Monte Carlo methods for approxi-
mating numerically the posterior densities, is presented in the following.
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4.2 Implementation Using Particle Filters

Assume that at time (k − 1)T , p(s0:k−1|y1:k−1,u1:k−1) is approximated by the
set of M weighted trajectories

{
wi

k−1, s
i
0:k−1

}M

i=1
:

p(s0:k−1|y1:k−1,u1:k−1) ∼=
∑

i

wi
k−1δ(s0:k−1, si

0:k−1) (12)

where δ is the Kronecker delta function.
The atlas posterior distribution is computed according to (8):

p(Λ|y1:k−1,u1:k−1) ∼=
∑

i

wi
k−1p(Λ|si

0:k−1,y1:k−1). (13)

The Gaussian distributions p(Λ|si
0:k−1,y1:k−1) = N(Mi

k−1,C
i
k−1) are obtained

using the linear MMSE estimator by one of two methods: The first method is to
update p(Λ|si

0:k−2,y1:k−2) at each time step where a huge amount of memory
is needed in order to store the M atlases. The second method is to compute it
from scratch at each time step using all the previous observations but with a
complexity that increases with time.

We propose a suboptimal solution that approximates the weighted mixture
of Gaussian distributions

{
wi

k−1, N(Mi
k−1,C

i
k−1)

}M

i=1
by a single Gaussian one

N(M̂k−1, Ĉk−1). This operation is repeated every q time steps by substituting
p(Λ|si

0:k+q−1,y1:k+q−1) by p(Λ|si
k:k+q−1,yk:k+q−1) where the initial distribution

p(Λ) is substituted by N(M̂k−1, Ĉk−1).
The posterior distribution p(s0:k|y1:k,u1:k) at time kT can be obtained in

three steps that are summarized in Fig. 1.

Initialization

0 0{ ,s }i iw

Prediction
Correction & 

Resampling
0:{ ,s }i i

k kw
0:{ ,s }i i

k kw

yk

.si i

k k

i

w ŝk

1 0: 1{ ,s }i i

k kw

uk

INS sensors RSS observation

Fig. 1. Particle filter for estimating the state vector sk.

Prediction Step The predictive distribution p(s0:k|y1:k−1,u1:k) can be written
as

p(s0:k|y1:k−1,u1:k) ∼= constant×
∑

i

wi
k−1p(uk|si

k−1)p(sk|si
k−1,uk)δ(s0:k−1, si

0:k−1)

∼=
∑

i

w̆i
kp(sk|si

k−1,uk)δ(s0:k−1, si
0:k−1) (14)
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where w̆i
k ∝ wi

k−1p(uk|si
k−1). A Monte Carlo approximation of this distribution

is obtained by drawing si
k from p(sk|si

k−1,uk):

p(s0:k|y1:k−1,u1:k) ∼=
∑

i

w̆i
kδ(s0:k, si

0:k). (15)

The measurement uk is included in this step since the INS observation models
are in general linear with respect to the state and samples can be easily drawn
from p(sk|si

k−1,uk).

Correction Step In this step, the observation yk is used in order to compute
p(s0:k|y1:k,u1:k) by updating the weights according to

wi
k ∝ w̆i

kp(yk|si
0:k,y1:k−1). (16)

The value p(yk|si
0:k,y1:k−1) can be estimated with two methods:

- Using (11) with the complexity or memory drawbacks mentioned above.
- Using the following equation:

p(yk|si
0:k,y1:k−1) =∫

p(yk|Σk, si
k)p(Σk|Σ0:k−1, si

0:k)p(Σ0:k−1|si
0:k−1y1:k−1)dΣ0:k

(17)

where Σ0:k−1 = [ΣT
0 , · · · ,ΣT

k−1]
T and Σk = Σk(rk).

The distribution p(Σk|Σ0:k−1, si
0:k) can be computed from the initial a priori

atlas distribution p(Λ), and p(Σ0:k−1|si
0:k−1y1:k−1) is obtained by a Kalman

filter. As the trains run on nearly straight rails, the shadowing at a given
time step is uncorrelated with the shadowing at much older time steps
and the process p(Σk|Σ0:k−1, si

0:k) can be replaced by a p-order process
p(Σk|Σk−p:k−1, si

k−p:k) and thus limiting the complexity.

Resampling Step In order to avoid the weights degeneracy due to the increase
of the variance of the set

{
wi

k

}M

i=1
[5], a resampling step is performed. Thus, some

trajectories of weak weights are eliminated and some of strong weights repeated.
We execute this step when the effective number of particles Neff = 1/

∑
i(w

i
k)2

falls below a threshold.

5 Simulation results

In this section we introduce the motion and the observation model scenarios
assumed for the computer simulations and show the results.

The motion of the train is modeled by a simple linear Markov process. The
state vector is sk = [rk, vk]T where rk is the rail coordinate and vk is the speed.
The state vector sk evolves according to the following difference equation:

sk =
[

1 T
0 1

]
sk−1 +

[
0
T

]
(ak−1 + ek−1) (18)
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where ak−1 is the acceleration vector provided by an accelerometer and ek−1

is a Gaussian variable that accounts for the acceleration estimation errors. We
take the standard deviation of ek−1 equal to 1m/s2 and the mean equal to zero
(the accelerometer bias is assumed to be known, otherwise it can be added to
the state vector and tracked by the particle filter). The time step is T = 0.5s.
The train moves on a linear rail of length 4km and there are two base stations
located at [−1390,−1032]T and [1589,−688]T (in meters) as shown in Fig. 2.
The train is moving from the left to the right. The speed is linearly increasing
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Fig. 2. Rail and base stations deployment.

with time from 200km/h to 250km/h. The train takes 64s to make the 4km.
The shadowing has a standard deviation equal to σsh = 4dB and is correlated

according to the exponential function (1) and we set dcorr = 200m. The cross-
correlation coefficient from two different base stations is constant and equal to
0.5, for simplicity. The initial atlas mean is equal to zero and the atlas covariance
matrix is constructed according these parameters values.

The measurement error nk is a zeros mean white Gaussian process with a
diagonal covariance matrix and diagonal entries equal to 4dB2. In fact, to have
a white process, the error remaining after averaging out the fast fading has to
be white, and this can be obtained by a displacement of the antennas of about
λ/2 perpendicular to the motion direction, as shown in Fig. 3.

/ 2

d_antennas

Fig. 3. Train antennas with a displacement of λ/2.
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For the path loss, we consider the Macro-cell system simulation model defined
in [11] with omnidirectional base station antennas.

For the particle filter implementation, we take M = 100 particles. This num-
ber is sufficient since the dimension of the state vector is low (equal to two).
We also replace the Gaussian process p(Σk|Σ0:k−1, si

0:k) in (17) by a first-order
process p(Σk|Σk−1, si

k−1:k). At low train speeds, it might be useful to consider
higher orders of this process as the antennas at two non-consecutive time steps
can be overlapping as shown in Fig. 4(b).

In Fig. 5, we plot the Root Mean Square Error (RMSE) of the position. The
RMSE of the DR solution based on the accelerometer observations is increasing
with time. The initial position and speed are perfectly known.

The antennas placed on the train are equidistant. We can see that with 4
antennas, the performance is better when the distance between two consecutive
antennas is 20m (d anntennas in Fig. 3). A possible justification of this result is
that the antennas are overlapping at two consecutive time steps when the sep-
aration is equal to 20m leading to a better estimation of the shadowing, while
this overlap does not occur for a separation of 10m as shown in Fig. 4. Moreover,
the shadowing values affecting the different antennas measurements are less cor-
related for larger separations, and thus, leading to a higher diversity. We remark
that the RMSE begins to decrease after about 40s as the train approaches BS#2
since the path loss decreases logarithmitically with the distance which is better
estimated near a base station

In Fig. 6, the RMSE of the shadowing map of BS#1 is plotted after one
passing of the train. Later on, the obtained atlas distribution can be used as an
initial distribution for other trains passing through the same railway.

−1540 −1520 −1500 −1480 −1460
x coordinate (meters)

(a)

 

 

−1600 −1550 −1500 −1450
x coordinate (meters)

(b)

antennas at the first time instant

antennas at the second time instant

Fig. 4. Antennas positions at two consecutive time instants with separations of (a)
10m and (b) 20m. The velocity is 200 km/h.

6 Conclusions

We presented an on-board solution for train tracking based on the RSS measure-
ments in a radio communication system. It can be integrated with INS sensors
and can serve as a long time substitute of the GPS as it does not suffer from
error accumulation of DR solutions. We also perform a joint estimation of the
shadowing and construct the shadowing atlas.
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The atlas estimation can be processed either on-line or off-line where the
measurements made during the train travel are saved and processed by a server
at the railway station. The initial distribution of the atlas can be downloaded
at the railway station. An operation similar to the fingerprinting can be also
performed by making RSS measurements at known positions and updating the
atlas accordingly.
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