A New Variant of Nonparametric Belief
Propagation for Self-Localization

Hadi Noureddine*!, Nicolas Gresset*, Damien Castelain*, Ramesh Pyndiah®
*Mitsubishi Electric R&D Centre Europe, France
tTelecom Bretagne, France

Abstract—We consider the problem of relative self-localization
of a network of fixed communicating devices that evaluate range
measurements between each other. The solution is obtained in
two stages: First, a new variant of the Nonparametric Belief
Propagation algorithm is used for estimating the beliefs. This
variant is based on a Monte-Carlo integration with rejection
sampling where a delimited space region is determined for each
node in order to reduce the rejection ratio. Then, a new algorithm
based on estimation in discrete states space is proposed for solving
the flipping ambiguities resulting from the lack of measurements.
This solution has the advantage of reducing the amount of
communicating particles and the computation cost.

I. INTRODUCTION

Finding the positions of a set of wireless communicating
devices has a lot of practical applications, going from the
deployment of ad-hoc networks and its related topics, e.g.
communication enhancement and location-based routing, to-
ward a variety of location-based services and applications, e.g.
military, environmental and health.

The communicating devices may take several forms, such as
sensors, femto cells, access points, etc., with indoor or outdoor
deployment. They might be subject to several constraints on
their size, power consumption and price. Thus, developing
GPS-free localization techniques is capital.

If pairs of nodes perform measurements relevant to their
relative positions, they can be localized in a coordinate system.
Several names have been attributed to this topic in the liter-
ature, such as ‘network calibration’, ‘cooperative’ and ‘self-
localization’.

Several centralized and distributed algorithms have been
developed in order to solve this localization problem. For
centralized algorithms, measurements are collected to a central
processor where the overall processing is done. One example
of such an algorithm is the ML estimation [1][2], which can be
applied if the statistical model of the measurements is known.

In distributed algorithms, all the nodes are involved in the
estimation process, and the computation is distributed among
them. These algorithms are most useful for large networks. In
[3], a node estimates its distance to several reference nodes
according to the number of hops of the shortest connection
path. The positions are then found by multilateration. In [4][5],
successive refinement is processed, where one node refines and
sends its estimate to its neighbors at each iteration. The Belief
Propagation (BP) algorithm is based on probabilistic graphical
models [6][7] where each node calculates the probability

density function of its coordinates, based on prior informa-
tion, measurements and probability densities provided at each
iteration by neighboring nodes. This algorithm produces both
an estimate of locations and metrics of uncertainties.

In this paper, we are interested in Nonparametric Belief
Propagation (NBP)[8], which is a particle-based version of
the BP.

In the first phase of our solution, NBP is implemented using
a Monte-Carlo integration instead of the stochastic method of
[9]. Furthermore, the samples are selected from the beliefs
by using rejection sampling. The errors on measurements
are supposed to lie in known intervals, which allows for
constructing limited space regions for each node and thus
reducing the rejection ratio.

In the second phase, we propose an algorithm for miti-
gating the flipping ambiguities that result from the lack of
measurements. This algorithm is based on K-means clustering
and estimation in discrete-valued states space, and has the
advantage of drastically reducing the computation complexity
and the amount of data to be exchanged.

The rest of the paper is organized as follows: In section
II, the problem is formulated as a graphical model, and our
implemented variant of the NBP is presented. In section III,
we present a new method for solving the flipping ambiguities
remaining after convergence of the NBP algorithm. Simulation
results and conclusions are provided in sections IV and V.

II. PROBABILISTIC GRAPHS APPLICATION TO
SELF-LOCALIZATION

In this section, we consider the belief propagation applied
to self-localization. We assume that we have N fixed nodes
scattered in a planar space, and only consider 2D localization.
In addition, we only consider relative localization as no node
knows its absolute position.

Each node obtains distance measurements with the set of
its neighboring nodes, and these measurements are corrupted
by an additive error. Nodes are mutually neighbors, and
the relationship between the nodes can be described by an
undirected graph.

We assume that neighboring nodes share the same obser-
vation on their distance. Let x; denote the two-dimensional
position of node 7, and dl-j the noisy distance measurement
with its neighbor j. The joint a posteriori probability distribu-



tion factorizes as:
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where V is the nodes set and Q(i) is the set of neighbors
of node i. W;;(x;,%;) = p(di;/xi,%;) is a pairwise potential
function and ®,(x;) = p;(x;) is the a priori probability on the
location of node <.

Two approaches are possible for estimating the positions of
the nodes:
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- Find the joint maximum a posteriori (MAP) of all x;’s, or
in other words, the sequence of states {x;} maximizing
(1). For example, the Max-Product algorithm finds this
most likely sequence of states.
- Find the MAP of each x; apart. This can be done by
a marginalization of (1) so as to obtain the a posteri-
ori probability distribution at each node. For example,
the Sum-Product algorithm is a way for evaluating the
marginalization.
In the following, the Sum-Product is considered so as to
determine the belief of each node for a given position, and
is described in the following subsection.

A. Belief Propagation

The previously described model can be qualified as a
probabilistic graphical model, in which a node represents a
random variable or a parameter to be estimated, and an edge
expresses the existence of a probabilistic relationship, or a
compatibility, between two nodes.

Belief Propagation (BP) is an iterative message passing
algorithm that calculates the posterior marginalization at each
node. At the n-th iteration, each node computes its belief
by taking the product of its local potential and the incoming
messages from its neighbors as follows:
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The message from node j to node i, called the update rule,
is:
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where Q(j)\¢ is the set of neighbors of j except i. All
messages are initialized to an arbitrary value, for example 1.

In the case of graphs without loops, it is known that
this algorithm perfectly computes the marginal probability
distributions, and the needed number of iterations is equal
to the graph diameter. If loops occur in the graph, good
approximations of the marginal probability distributions are
observed under some conditions [10].

The integral equation (3) can be evaluated when the vari-
ables are discrete valued or in the case of Gaussian distri-
butions. When these conditions are not fulfilled, the integral
equation rarely has tractable analytic solution and must be
replaced by an approximation, such as for the Nonparametric

Belief Propagation. As relative positioning is considered here,
®;(x;) will be dropped from the equations given above.

B. Nonparametric Belief Propagation

Nonparametric Belief Propagation [8] is based on stochastic
methods for propagating kernel-based approximations of the
continuous messages In this algorithm, we propagate a set
of values {r y from node j to node i, where r;’ ~
U, (xs, sgl,i)) isa sample taken from W;; for a position sample
s(-li) of node j. The set of position samples {sg?}{\i , are drawn
from the beliefs with an association of weights. The message
mj; is then formed by placing identical Gaussian kernels
about the points {rg?} which requires an appropriate choice
of the kernel covariance matrix. The belief function, computed
by taking the product of the incoming messages, becomes a
Gaussian mixture with a huge number of components. In the
case where the potentials are Gaussian mixtures, [11] proposed
to use Monte-Carlo integration for estimating the message
equation (3).

In relative positioning, we consider that each node lies in
a known limited region of space. This region is obtained
by assuming that the measurement error is constrained to
a known interval, with a good probability. This allows for
the application of rejection sampling in drawing independent
samples. Thus, we propose to perform a Monte-Carlo integra-
tion of equation (3) without resorting to Gaussian mixtures
approximations and kernel covariance matrix choice.

A Monte-Carlo integration of equation (3) yields m;;, an
approximation of mj;, by drawing M samples {slﬂ}l]‘il from
pgﬁ) defined as:
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which can be considered as a probability density function. In
general, we can draw the samples from any density function
gji(x;) that does not vanish when p§?) does not. The message
m;; then becomes the weighted mixture:
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where 775 = pgzb)( ﬂ)/gh( jz) is the weight associated to
sample s . We choose g;;(x;) equal to the belief of node j:
~ (n—1
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This function is the same for all i € Q(5).

When compared to existing relative positioning techniques
using NBP [9][12], we propagate the generated samples sé-i
from the node j to all its neighbors and sampling at node j
is done only once. Thus, we don’t have to sample from the
different potentials. Furthermore, we don’t have to estimate
densities for the relative directions, in order to concentrate
the samples in regions of interest, as done by [9] in order to
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Fig. 1. Three graphs in 2-dimensions. (a) is flexible and can be continuously
deformed. (b) is rigid and can have only discontinuous deformations. (c) is
globally rigid and cannot be deformed.
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alleviate the fact that potentials do not contain information on
the directions.

As a remark, the associated weights 7!, = 1/ mg“”(s;i)
could be calculated locally at node ¢ and not propagated.

III. DEALING WITH AMBIGUITIES

The problem of relative localization can be resolved up to
congruence, i.e., translation, rotation or reflection of the whole
network. Firstly, we define the node 1 as the origin in order
to remove this ambiguity. We attribute the coordinates vector
x1 = (0,0)7 to this node. Secondly, the node 2 is set on the
positive half of the x-axis, x3 = (22,0)7 and x5 > 0. Finally,
the node 3 is set in the half plane with positive y-component,
ys > 0. After verifying these three conditions, the region of
the space where each node can lie can be determined based
on the hypothesis that measurement errors are bounded.

It is important to understand the conditions under which
the problem is solvable. For example, in the case of lack
of measurements, the network can be subject to deformation
as shown in Fig. 1(a), where any rotation of the two pairs
of two points on the extrema around the center points lead
to a possible solution. A sufficient condition for obtaining a
unique solution is to observe a globally rigid graph of the
network [13][14]. In this paper, we only consider rigid graphs,
where discontinuous deformations are possible as shown in
Fig. 1(b). An efficient algorithm for testing graph rigidity [15],
called The Pebble game, is implemented in our simulations.
This algorithm can also identify all rigid subgraphs and its
complexity is at most O(N?).

A. Flipping Ambiguities

Discontinuous deformations create a kind of ambiguity on
the solution that we call flipping ambiguity. It follows that
the beliefs of some nodes occur to be multimodal. In Fig.
4, a network of 7 nodes is plotted altogether with the region
of each node. Nodes 5 and 7 can be flipped, resulting in 4
possible solutions for node 7. Thus its belief has four modes
as is illustrated in Fig. 5.

In this subsection, we present the sate-of-the-art for solving
ambiguities, as introduced in [9]. The fact that two nodes
are not neighbors gives the additional information that they
are probably far one from the other. This information will
be exploited for solving ambiguities. We note P,(x;,x;) the
probability for two nodes to be neighbors one of the other.
This probability is a function of the communication channel
quality, and mainly of the distance between the two nodes. We
do not investigate thoroughly the communication performance

Fig. 2. A rigid network. Message from node (a) has to be sent three times
before reaching nodes (b) and (c).
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Fig. 3. Average number of neighbors vs Total number of nodes for R/L =
0.3 and R/L = 0.5.

and consider the following simplified model for P,(x;,x;)
[9]:
Po(xi,x;) = exp (—0.5 Ix; —xj||2/R2) ()

In [9][12], P, is included in (1) and in the NBP exchanged
messages that occur with direct and ‘2-step’ neighbors. The ‘2-
step’ neighbors of node ¢ are the set of neighbors of neighbors
of ¢ (except 7). For the latter, potentials are taken as 1 — P,.

One drawback of this method is the complexity and over-
head of exchanged messages. Indeed, if the nodes perform
a broadcasting, the number of broadcast operations at some
nodes should at least be doubled before the messages reach
“2-step’ neighbors. For example, the message from node a in
Fig. 2 has to be broadcast three times before attaining nodes b
and c. Furthermore, samples drawing and beliefs computation
become more complicated, as the latter are constructed by
taking the product of all incoming messages, whether from
direct or ‘2-step’ neighbors. Fig. 3 shows the average number
neighbors in rigid networks. Nodes are drawn uniformly in an
L x L square, and the connectivity is constructed according
to (7) and independently for each pair of nodes. It shows that
the number of neighbors is much increased when considering
direct and ‘2-step’ ones, especially when R/L is small.

B. A clustering-based disambiguiting algorithm

We propose a new algorithm for solving flipping ambiguities
which reduces both the exchanges overhead and computation
complexity. It is applied in a second phase after finding the



beliefs with the NBP, during which we considered only direct
neighbors. The algorithm is composed of the following steps:

1) We first identify the different beliefs modes. In order to
do so, we apply K-means clustering [16] on the samples,
which is particularly relevant as the samples tend to be
concentrated around the modes. As a remark, the farther
we go from the node 1 located on the origin, the higher
will be the number of possible flips. We propose to
take the number of clusters proportional to the smallest
number of hops to node 1. We can also take a constant
overestimated number of clusters. Other methods for
automatically determining the number of clusters from
the samples are described in [17].

2) For each cluster, we retain only the sample that has the
maximum belief. For example, in Fig. 6, clustering is
done for the samples of node 7, where four clusters are
considered.

3) At this point, each node will have a small set of points
that include the belief’s modes. We apply a discrete
version of the BP to find, again, the beliefs of these
retained points, with involving the “2-step’ neighbors
this time.

e« We can use the Sum-Product rules, and in that case
the messages are:
=
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where S; is the set of retained points of node
i after clustering, ¢ = 1,---,]S;| and Q2(i)
is the set of ‘2-step’ neighbors of ¢. We com-
pute \I/ij (Si,Sj> = p(Czij/Si,Sj)PO(Si,Sj) for direct
neighbors, and U;;(s;,s;) = 1 — Py(s;,s;) for 2-
step’ ones.
o If the Max-Product is used instead, the messages
are:
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4) The beliefs at node ¢ are computed with:
B = [ mish a0

kEQ(:)UQ2 (1)

5) The estimated position is taken as the point with the
maximum belief:

an

With this algorithm, the ‘2-step’ neighbors are implicated
in the message exchange process, but the amount of data
contained in the message is much smaller than that of the
first phase NBP.

For the network of Fig. 4, the estimated positions are plotted
in Fig. 7. The crosses represent the estimates from the NBP
without applying the second stage algorithm. Circles represent
the estimates after the second stage of disambiguiting where
the Max-Product algorithm is applied.
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Fig. 4. A network of 7 nodes. The region of each node is represented with
a color. Nodes 5 and 7 can be flipped causing an ambiguity.
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Fig. 6. Clustering of the samples of node 7. A color is attributed to each
cluster. These samples are drawn from the belief after 4 iterations.
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Fig. 7. Estimates of the positions of nodes of Fig. 4, with and without
solving ambiguities

IV. SIMULATIONS

To measure the performance of the localization algorithm,
we use a metric called Global Energy Ratio (GER) [18], given
by (12).

52
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where é;; = (d;; —d;;)/d;; is the normalized error, d;; is the
true distance and a?l-j is the distance in the algorithm’s result.
This metric measures the performance compared to the true
configuration topological properties, by taking into account all
the distances, whether measured or not. The method developed
in the previous section is compared to the ML estimate.
In order to make a fair comparison, the density function
P,(x;,x;) is included in the joint probability distribution. We
also include 1 — P,(x;,x;) for the 2-step’ neighbors.

The Pebble Game algorithm is implemented to identify
the rigid graphs, for which the localization is done. The
measurement errors follow a truncated Gaussian distribution,
with variance o , and interval [—a,a]. The region of space
where each node can exist is determined according to the
measurements.

Note that truncated Gaussian potentials will cause that the
belief given by (6) will have a support different than that of the
density function (4). To circumvent this problem, we make a
relaxation of the potentials by taking them as Gaussian during
the application of the NBP and discrete BP algorithms.

In Fig. 8, the GER is plotted vs the iteration number for
rigid networks of 10 nodes. The error interval is [—7;7] and
the variance is 3. The connectivity is established according to
(7) with R/L = 0.2 and independently for each pair of nodes
and L x L is the total considered area. It shows that the GER
is much better in the cases where disambiguiting is applied.
It also shows that the Max-Product algorithm performs better
than the Sum-Product.
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Fig. 8. GER vs Iteration number for a network of 10 nodes, R/L = 0.2 ,
error interval = [-7;7] and o = 3.

In Fig. 9, the average rejection ratio for rigid networks of
10 nodes is plotted. It shows that this ratio increases with
iteration number. This can be justified by the fact that beliefs
become more tightened around their modes as the nodes gather
more information about their locations. Here, the samples are
drawn uniformly from the determined regions before applying
the rejection test.
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Fig. 9. Rejection ratio as a function of the number of iterations. The error
is taken to be a truncated Gaussian with interval [-10;10] and variance o.

V. CONCLUSIONS

In this paper, we presented the problem of sensor networks
localization with a use of a graphical model. We also presented
nonparametric belief propagation (NBP), and applied a new
variant of this method, which is based on a Monte-Carlo
estimation of the propagated messages. We used rejection
sampling to draw samples from the nodes’ beliefs. These



samples are taken from determined regions of the space
where the nodes can exist. Other sampling methods can be
investigated, such as the Metropolis-Hastings method [19],
which is a Markov Chain Monte-Carlo method (MCMC), and
the Ziggurat method [20]. If the rejection ratio is very high,
rejection sampling can be applied to some of the samples.
Then these points are considered as kernels centers, and the
remaining samples are drawn from the probability density
represented by the kernels.

Due to the fact that rigid graphs are subject to discontinuous
deformations, ambiguities on nodes positions may exist. To
deal with them, we proposed an algorithm, based on K-
means clustering, which reduces both the communication and
computation cost. The estimation result is much improved with
this algorithm and the result is good in comparison to the ML.
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