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Abstract—In this paper we present the results of real-life
localization experiments performed in an unprecedented coop-
erative and heterogeneous wireless context. These measurements
are based on ZigBee and orthogonal frequency division mul-
tiplexing (OFDM) devices, respectively endowed with received
signal strength indicator (RSSI) and round trip delay (RTD)
estimation capabilities. More particularly we emulate a multi-
standard terminal, moving in a typical indoor environment,
while communicating with fixed OFDM-based femto-base stations
(Femto-BSs) and with other mobiles or fixed anchor nodes
(through peer-to-peer links) forming a wireless sensor network
(WSN). We introduce the measurement functionalities and met-
rics, the scenario and set-up, providing realistic connectivity and
obstruction conditions. Out of the experimental data, prelim-
inary positioning results based on cooperative and geometric
algorithms are finally discussed, showing benefits through mobile-
to-mobile cooperation, selective hybrid data fusion and detection
of unreliable nodes.

I. INTRODUCTION

Most of our usual environments comprise heterogeneous

wireless resources, such as WiFi access points (APs), Long

Term Evolution (LTE) femto base stations (Femto-BSs) and

wireless sensor networks (WSNs). These environments are

also densely crowded by multi-standard mobile terminals

(MTs) cooperating directly over short or medium ranges.

In such environments, the radiolocation capability has been

identified as a key feature to enhance the connectivity expe-

rience (e.g. through vertical handover) and to enable indoor

navigation or context-based services [1].

Algorithmic works reported in the recent literature have

been focusing on decentralized iterative positioning (e.g. [2],

[3], [4]) on the one hand, and cooperative links selection (e.g.

[5], [6]) on the other hand, but the localization performance

has been most often assessed through simulations so far.

The latter evaluations cannot account for complex phenomena

inherent to cooperative and heterogeneous contexts, such as

space-time correlations between the different involved radio

access technologies (RATs), the conjunction of harmful sparse

connectivity and poor geometric dilution of precision (GDoP)

conditions, or erratic radio obstructions experienced along the

MT trajectory (e.g. [7]). Finally, experimental investigations

have been carried out more recently, though dealing uniquely

with cooperation in homogeneous scenarios (e.g. [8]).

In this paper, we describe a localization-oriented measure-

ment campaign realized in a jointly cooperative and hetero-

geneous wireless indoor context. ZigBee devices are enabled

with received signal strength indicator (RSSI) measurement

capabilities whereas an OFDM setup allows for round trip

delay (RTD) estimation, making possible the emulation of a

multi-standard MT. Applying decentralized iterative message-

passing and non-cooperative geometric positioning to the ex-

tracted experimental data, we show benefits through selective

peer-to-peer (P2P) short-range cooperation and multi-RAT

hybrid data fusion, considering different path loss and ranging

error models to represent such harsh indoor scenarios.

The paper is structured as follows. In Section II, we recall

the characteristics of the involved Zigbee and OFDM radio

devices. Section III describes our experimental setup, along

with the covered indoor scenarios. Section IV subsequently

reports positioning results obtained through decentralized co-

operative message-passing and geometric algorithms based on

the measurement data.

II. AVAILABLE RADIO ACCESS TECHNOLOGIES AND

LOCATION-DEPENDENT METRICS

A. RTD-Enabled OFDM Devices

In the context of the WHERE2 project [1], we developed a

flexible test-bed that allows for P2P ranging based on analogue

amplify RTD. Fig. 1 shows the test-bed [9] embedded in the

multi-standard MT. The analogue amplify RTD determines,

based on the fixed processing delay in the return node, the

distance similarly to the time of arrival (ToA) method. The

test-bed consists of two parts, a master node and a slave node.

The master node transmits an OFDM modulated signal to

the slave node. The slave node returns this signal amplified.

The master node receives the signal from the slave node and

estimates the RTD to determine the distance. This approach

simplifies the synchronization between both nodes. The key
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Fig. 1. Multi-standard MT mounted on a trolley in the small open area.
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Fig. 2. RTD ranging performance versus distance with a correlator in the
investigated indoor environment: LoS1 (in the long corridor), LoS2 (after the
corridor in the open space), and NLoS (in the open space).

system parameters are a sampling rate of 120 MHz with a

subcarrier spacing of 14.65 kHz. Only the inner 512 subcar-

riers are active, resulting in an effective bandwidth of 36.62

MHz. The center frequency of the master-to-slave link is 5.5

GHz and the reverse link is 5.7 GHz. The transmit power was

limited to 21 dBm.

RTD estimation is based on a correlation receiver with

interpolation. Thus, it is possible to obtain fractional sample

delays, which lead to higher ranging accuracy. The structure of

the OFDM modulated signals is similar to that used in 3GPP-

LTE. This allows for future investigations of flexible allocation

schemes of subcarriers to steer the ranging performance de-

pending on the requirements. Fig. 2 shows the ranging perfor-

mance versus distance for different propagation conditions in

the investigated indoor environment. We distinguish between

three constellations characterized by the position of the MT:

corridor (LoS1), open area close to the right end of the corridor

(LoS2), and open area (NLoS), see the dotted-line trajectory

on Fig. 4. The two former constellations correspond to line

of sight (LoS) transmissions, whereas the latter is for non-line

of sight (NLoS) conditions. As expected we can observe in

Fig. 2 a performance degradation as the distance between the

RTD anchor and the MT increases. The larger errors observed

at the end of the corridor and in the open area are caused by

more severe multipath propagation.
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Fig. 3. Cluster plot of the experimental RSSI values in Setup 1 (see III-A)
versus distance, with the path loss model using the “global” settings.

B. RSSI-Enabled ZigBee Devices

Other radio transceivers developed in WHERE2 and in-

volved in the measurement campaign are based on the CC2431

chip from Texas Instruments [10], which is suitable for IEEE

802.15.4 and ZigBee applications. Regarding RSSI measure-

ments, the most relevant CC2431 radio parameters are the

operation frequency of 2.4 GHz with a bandwidth of 5 MHz,

a TX power of 0 dBm and a RX sensitivity of -92 dBm.

To infer on the ranges from experimental RSSI readings we

use the one-slope path loss model [11], whose parameters are

the reference power P0 at the distance d0 = 1 m, and the path

loss exponent np, which characterizes the power decay versus

distance. The deviations of experimental RSSI values from the

path loss model are commonly modeled as realizations of a

zero-mean Gaussian r.v. with variance σ2

sh.

These path loss parameters are environment dependent

and as such must be determined empirically from a set of

calibration measurements. For the results presented hereafter

we considered using the measurement setup described in Sec-

tion III-A and Least Squares (LS) data fitting. The parameters

extracted for this site-specific “global” model (vs. respectively

the “data sheet” parameters provided by the manufacturer in

an unspecified scenario [10]) are P0 = -47 dBm (resp. -42

dBm), np = 2 (resp. 3) and σsh = 5.8 dB (resp. 5 dB).

III. MEASUREMENT SETUPS AND SCENARIOS

In the WHERE2 project, several measurement campaigns

(including the experiments described herein) are scheduled for

algorithm validations and benchmarking by interested partners.

The corresponding data is available on the project website [1].

A. Setup 1: Cooperative and Heterogeneous Scenario

In this setup we aim at covering the whole measurement

area with the used ZigBee nodes. This allows the verification

of various algorithms enabling e.g., (non-)cooperative posi-

tioning or the extraction of shadowing maps. Fig. 4 shows a

simplified floor plan with the positions of the ZigBee nodes

and the RTD slave anchor and Fig. 1 depicts a photograph

of the measurement setup. The RTD slave node is located at

the end of the corridor, to allow LoS ranging for the majority
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Fig. 4. Cooperative and heterogeneous Setup 1: Back-and-forth trajectory of
a multi-standard OFDM-RTD/ZigBee MT in a corridor and small open area
with 7 ZigBee anchors and 1 RTD anchor.

of ground-truth points (GTPs). The ZigBee anchors are dis-

tributed in a way to satisfy the limited communication range as

well as to reduce the GDoP along the main track. Our multi-

standard MT is composed of the RTD master node and one

ZigBee coordinator mounted on a trolley. Measurements are

performed at stationary positions for approximately 100 s each.

GTPs along the corridor are separated by 1 m whereas GTPs

perpendicular or parallel to the corridor track are separated by

0.5 m, with an accuracy better than 2 cm. Furthermore, we

chose one ZigBee node mounted on a tripod as mobile node,

crossing the main track in the corridor, see the green dashed

line in Fig. 4. The multi-standard MT moves from the RTD

slave node along the corridor, whilst in parallel, this specific

mobile node walks along its own GTP-track. This additional

node could be exploited either as moving anchor node or as

cooperative node with estimated position.

B. Setup 2: Impact of Peer-to-Peer Connectivity

The second measurement setup aims at a further evaluation

of P2P cooperation. All ZigBee nodes are located in a small

open space area, see Fig. 5. Thus, multiple P2P links are avail-

able and the positioning system is hopefully overdetermined.

This helps to evaluate the potential of more sophisticated

cooperative positioning algorithms, GDoP reduction and link

selection. The measurement procedure is similar to that used

for Setup 1, but we start in the middle of the corridor.

This ensures a fully connected network in which the ZigBee

coordinator on the MT has valid ranging links to all anchors.

IV. TESTED ALGORITHMS AND RESULTS

In this section, we apply selected positioning algorithms

developed in WHERE2 [12] onto experimental ranges derived

from RTD and RSSI measurements (from both Setups 1 and

2). RSSI-based range information is derived using estimators

from [13], while using the path loss model parameters dis-

cussed in Section II-B.

A. Non-Cooperative Positioning

The non-cooperative RGPA algorithm described in [14],

which is based on a geometric representation of location

Fig. 5. Cooperative and heterogeneous Setup 2: Identical multi-standard MT
track but with locally higher short-range peer-to-peer connectivity in the small
open area.

dependent metrics (LDPs), is applied to experimental data

from measurement Setup 1. We consider all the RSSI values

measured between the fixed ZigBee anchors and the ZigBee

coordinator of the multi-standard MT. Fig. 6 shows the cu-

mulative distribution function (CDF) of estimated location

errors, with and without incorporating the RTD measurement

on top of the RSSI measurements, illustrating the benefits that

can be achieved through hybrid data fusion in comparison

with homogeneous localization. This is due to the fact that

in Setup 1 LoS conditions prevail and that generally the

distances are large, and as such RSSI-based ranging errors

are large, which leads to a significant improvement from the

RTD measurements. Fig. 6 also presents a comparison with

a randomly initialized non-cooperative maximum likelihood

(ML) algorithm. The comparison reveals that the geometric

algorithm slightly outperforms the ML solution in the small

and medium location error regimes, while suffering from

performance degradation in the order of 1 m only in the worst

case location error regime caused by severe measurement

outliers (i.e. beyond a location error of 4 m at 90% of the

CDF). In this region, the ML error would be anyway larger

than practical target thresholds in most indoor applications.

Furthermore, in comparison with ML, RGPA is completely

non-parametric and less demanding in terms of computational

complexity as heterogeneous constraints are incorporated. As

an illustration, the relative processing time elapsed during our

simulations after incorporating the RTD is slightly increased

by a few percents for RGPA but doubled for ML in comparison

with the homogeneous case. Moreover, the ML processing

time could be larger than that of RGPA by 15 to 20% in

a similar heterogeneous case.

B. Cooperative Positioning

We now compare two cooperative decentralized position-

ing solutions, namely the variational message-passing (VMP)

algorithm [2] and a two phased - nonparametric belief propa-

gation algorithm adapted from [4], with a cooperative central-

ized weighted least squares (WLS) algorithm [15] initialized

through semi definite programming (SDP) [16] and with a

non-cooperative decentralized anchor centroid (AC) solution
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Fig. 6. CDF of positioning errors for the RGPA and randomly initialized
ML positioning algorithms in Setup 1, with and without including the RTD
measurement on top of RSSI measurements.

[17]. The latter is used for initialization in the VMP algorithm.

VMP uses link-specific standard deviations in the distance-

error model. These standard deviations are computed from

distances estimated from multiple RSSI readings. For the

RTD measurement we distinguish between LoS and NLoS

conditions and set the standard deviation to 0.25 m and 1.5 m,

respectively. As for TP-NBP, we consider incorporating RTD

only for LoS links, assuming centered Gaussian errors, or in

both LoS and NLoS cases, but assuming that the measurements

follow a bi-modal mixture of Gaussian distributions. For the

WLS algorithm we select the weights as wi,j = 1/d̂2

i,j where

d̂i,j is the estimated distance between nodes i and j. The

AC algorithm solely relies on the positions of anchors to

which a link is available. For all these algorithms we consider

the data from the fixed OFDM RTD anchor, 4 fixed ZigBee

anchors, 3 ZigBee non-anchor nodes (with unknown positions)

and the multi-standard mobile trolley in Setup 2 (see Fig. 5).

We estimate the positions of the non-anchor nodes and the

mobile trolley. Fig. 7 shows the CDFs of the corresponding

positioning errors.

In the homogeneous cooperative case (see top curves of

Fig. 7), we observe that all algorithms perform better than the

AC method. For position errors larger than 4 m all algorithms

are above 75% of the CDF, where WLS and TP-NBP perform

better than (and VMP performs similar to) the AC method.

We also notice that VMP and WLS seem to perform equally

well for practical error ranges smaller than 3 m, while slightly

outperforming the TP-NBP solution.

Regarding node 02 (see Fig. 5), we could observe rather

frequent disconnections of its links and systematically over-

estimated distances for at least one of the available links.

Focusing on the VMP performance (see middle curves of

Fig. 7) we thus remark that positioning errors initially larger

than 2 m can be improved after discarding this unreliable

node and its RSSI readings. More specifically an error gain

of about 1 m is obtained at 80% of the CDF. This example

illustrates the benefits of identifying and incorporating solely

the most reliable cooperative nodes. This problem is one of

the ongoing topics in WHERE2 (e.g. based on link quality,

GDoP, theoretical bounds, or combined criteria [5], [6]).
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Fig. 7. CDF of positioning errors for the nominal AC, VMP, TP-NBP and
WLS algorithms in Setup 2 (top). VMP is shown excluding unreliable “Node
02” (middle) whereas both VMP and TP-NBP are shown including the RTD
measurement on top of RSSI measurements (bottom).

Including RTD measurements (see bottom curves of Fig. 7),

we observe only a small benefit for position errors larger

than 3.8 m in the VMP algorithm, whereas quite significant

gains are observed with TP-NBP while performing selective

hybrid data fusion, that is, after incorporating only LoS

measurements under the standard Gaussian error assumption

or both NLoS and LoS measurements under a global bi-modal

error assumption. Advantageously the latter approach does

not necessitate any prior NLoS detection step. One may also

expect that applying high-resolution techniques for single-link

RTD measurements should provide much better robustness

against multipath, and thus significantly lower RTD variance.

Therefore, fusion results using LoS measurement data could

be even more stable whereas systematic biases could be more

easily mitigated in identified NLoS areas.

In addition to accuracy, the latency and communication

cost of cooperative algorithms may be critical under real-time

constraints. These factors depend on the number of iterations

and on the computational complexity per iteration. In the

family of NBP-based algorithms for instance, the order of

complexity at one node is O(d.M2) where d is the number of

1-hop neighbors and M is the number of particles. However

the number of needed iterations is generally smaller than the

network graph diameter. In dynamic cooperative localization,

after initialization, one iteration can be sufficient, and drawing

the particles from a motion model can reduce even further the

computational complexity.

C. Sensitivity to a priori Path Loss Models and Parameters

We finally investigate the sensitivity of the RGPA and VMP

positioning errors to different path loss model settings in the

prior RSSI-based ranging step. The CDFs of position errors are

shown for each algorithm using two different path loss model
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Fig. 8. CDF of positioning errors for RGPA and VMP using the different
path loss model settings reported in Section II-B.

settings in Fig. 8. The results for VMP are obtained for Setup

2 using the “global” and “data sheet” settings. The results for

RGPA are obtained for Setup 1 using the “global” path loss

model, and using an individual setting for each ZigBee node

termed “node specific” in the figure. The set of such “node

specific” models provides only a slight improvement over the

“global” path loss model in the practical error range for indoor

localization (i.e. up to 3 m). Hence from these preliminary

results no clear benefit from using individually tailored settings

is seen. The CDF of VMP shows that the algorithm is

even rather insensitive to the selected path loss model. This

apparent insensitivity is likely caused by the relatively large

and prevalent variance of the RSSI measurements. The same

effect could also explain why the RGPA results do not improve

much when “node specific” models are utilized, even though

the self-learning of node/environment specific parameters has

already been shown valuable [7].

V. CONCLUSION

In this paper we presented a heterogeneous and cooperative

positioning test-bed. This test-bed combines a single OFDM-

based radio device using time-based distance measurements to-

gether with multiple ZigBee nodes relying on the received sig-

nal strength indicator. The measured data was post-processed

by different positioning algorithms, including a variational

message-passing approach, a two phased - nonparametric be-

lief propagation solution and a robust geometric algorithm, all

developed in the frame of the WHERE2 project. Cooperative

positioning in indoor environments must classically cope with

fast changing conditions, in terms of individual nodes mobility

and problem geometry. In our investigations, the involved

ranging devices also created additional measurement outliers

(e.g. one node being even unreliable), which are representative

of real-life operating conditions. This causes new challenges

for the algorithms that were investigated and compared. A

few insights have thus been disclosed in favor of context-

aware data fusion (e.g. depending on LoS/NLoS condition)

and selective cooperation through links weighting or nodes

censoring. Furthermore, even if most algorithms are parametric

and require a priori models for the measurement data, they

seem to be rather insensitive to using either values from the

literature or refined models based on in-site measurements, at

least in practical indoor localization error regimes.

New experiments scheduled in WHERE2 will involve low

data rate Ultra Wideband (UWB) devices as additional het-

erogeneous resources. The latter will contribute to increase

short-range peer-to-peer connectivity, while providing high

ranging precision. On this occasion, complementary algorith-

mic aspects shall be addressed, such as convergence issues

or real-time processing constraints within message-passing

algorithms, as well as links selection mechanisms.
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