
Cooperative Network Localizability via
Semidefinite Programming
Hadi Noureddine∗†, Damien Castelain∗, Ramesh Pyndiah†

∗Mitsubishi Electric R&D Centre Europe, France
†Telecom Bretagne, France

Abstract—In cooperative localization, the aim is to compute the
locations in Euclidean space of a set of nodes performing pair-
wise distance measurements. In cases of lack of measurements,
several nodes might have multiple feasible solutions meeting the
distance constraints. In this paper, we are interested in identifying
the nodes that have a unique solution.

By employing a semidefinite programming (SDP) formulation
of the problem, it is possible to identify only a portion of the
uniquely solvable nodes. To improve the identification of these
nodes, we develop an iterative algorithm based on SDP. At each
iteration, the objective function of the SDP problem is modified
in order to identify additional uniquely solvable nodes.

We apply this algorithm to study the statistical occurrence of
uniquely solvable nodes in uniformly generated networks, and
compare the results with the simple SDP. We also investigate
the errors in the computed locations for both methods and a
variant of the SDP method augmented by bounding constraints
on unobserved distances.

I. INTRODUCTION

Finding the locations of a set of wireless communicating
devices has a lot of practical applications, going from the
deployment of ad-hoc networks and its related topics, e.g.
communication enhancement and location-based routing, to-
ward a variety of location-based services and applications, e.g.
military, environmental and health.

When pairs of devices (nodes) perform measurements rele-
vant to their relative locations, they can be localized in a Carte-
sian coordinate system. Several names have been attributed
to this topic in the literature, such as network calibration,
cooperative and self-localization [1].

In general, not all pairs of nodes perform measurements
and several nodes might have ambiguities on their location
solutions. The detection of the possible ambiguities is of great
importance as it allows to deal with them: either by avoiding
them and improving the robustness of the solutions [2], or by
mitigating them by making additional measurements or using
more a priori information [3].

In this work, we consider error free distance measurements,
and we are interested in identifying the nodes that have a
unique solution verifying the distance constraints. In real appli-
cations, measurements are affected by errors, but considering
error free ones can have several justifications: e.g., the nodes
locations are already estimated by an appropriate estimation
method [4] and one wants to test the uniqueness of the
estimates, or the true locations are known and one is studying
the statistical occurrence of the uniquely solvable nodes.

One approach to study the uniqueness is graph rigidity
theory [5]. A graph can be associated to a network by
associating a vertex to each node and connecting two vertices
if their separating distance is known. For a network lying in a
2-dimensional space and having the nodes in generic positions
(i.e., no collinear or collocated nodes), it is shown in [6] that
a sufficient (but not necessary) condition for a node to have a
unique solution is the following:

• the vertex corresponding to this node in the network
graph G belongs to a globally rigid subgraph of G,

• and the vertices corresponding to at least three anchor
nodes of known locations belong to this subgraph.

This test is not applicable when nodes are not in generic
positions (e.g., a planned deployment where several nodes are
collinear).

Another approach is to use SDP. It is shown in [7] that
by formulating the network localization problem as an SDP
problem with an appropriate relaxation of the constraints, all
the nodes of any uniquely localizable network can be identified
and correctly localized. When the network is not uniquely
localizable, some nodes having a unique solution are wrongly
localized by the SDP method which does not allow to decide
about the uniqueness of their solutions. In [3], the SDP solu-
tion is post-processed by a steepest descent algorithm, and in
[8], the objective function of the SDP formulation is modified
to maximize the sum of lengths of some unobserved edges.
While these two solutions can correctly localize additional
nodes, they do not tell us whether these nodes have a unique
solution.

In this paper, we develop an algorithm based on SDP
method that improves the identification of the uniquely solv-
able nodes. It performs by modifying the objective function
of the SDP problem in order to minimize the rank of the
optimal solution. This algorithm is implemented iteratively
where we modify the objective function at each iteration and
try to identify additional nodes.

The paper is organized as follows. In section II, the network
localization problem is presented and the SDP method is
formulated and applied to localizability testing. In section III,
the iterative SDP-based algorithm is developed. And in section
IV, it is compared statistically to the simple SDP method
in terms of the detection of uniquely solvable nodes. This
comparison is done via Monte Carlo simulations. In section
V, the accuracy of the computed locations is investigated
and compared to another formulation of the SDP method



incremented by bounding constraints on unobserved distances.
Concluding remarks are presented in section VI.

II. SDP METHOD AND LOCALIZABILITY TEST

In this section, we present the network localization problem,
define the term of unique localizability, and show how the SDP
method identifies the uniquely localizable nodes.

We use the following notations. I2 is the identity matrix of
rank 2. 0 is the column vector of zeros. ei is the column vector
with 1 at the ith position and zeros elsewhere. eij = ei − ej .
The dimensions of the vectors will be clear in the context.
‖v‖ =

√
〈v,v〉 is the Euclidean norm, and 〈, 〉 is the inner

product. (u;v) = [uT vT ]T and vT denotes the transpose of
v. R is the field of real numbers.

A. Network Localization Problem

Throughout this paper, we consider networks lying in a 2-
dimensional space (2D). The results can be extended to the
3-dimensional case straightforwardly.

A network of size N consists of m < N anchor nodes of
known locations ak ∈ R2, k = 1, . . . ,m, and n = N − m
target nodes of unknown locations xj ∈ R2, j = 1, . . . , n.
ak and xj are column vectors. Nodes are denoted by their
location vectors, i.e., node xj denotes the jth target node out
of n.

The distance between an anchor node ak and a target node
xj is denoted by d̄kj = ‖ak − xj‖. And the distance between
two target nodes xi and xj is denoted by dij = ‖xi − xj‖.

The distance between two nodes is known (and the nodes
are said to be connected) if and only if (iff) this distance is
less than a connectivity range R.

Let NA =
{
(k, j) : d̄kj is known

}
and NT =

{(i, j) : dij is known}.
The network localization problem can be stated as follows:

find xj , j = 1, . . . , n,

s.t. ‖ak − xj‖2 = d̄2
kj ∀(k, j) ∈ NA

‖xi − xj‖2 = d2
ij ∀(i, j) ∈ NT .

(1)

Let X̄ = [x̄1, . . . , x̄n] ∈ Rh×n, h ≥ 2. We admit that X̄ is
an h-dimensional solution of the network localization problem
iff it verifies the following equations:

‖(ak;0)− x̄j‖2 = d̄2
kj ∀(k, j) ∈ NA

‖x̄i − x̄j‖2 = d2
ij ∀(i, j) ∈ NT ,

(2)

where (ak;0) = [aT
k 0T ]T is an h-dimensional vector.

Now, we define the term of unique localizability:
Definition 1: A target node xj is 2D uniquely localizable

iff for every pair of 2-dimensional solutions X̄ and X̄′, the
equation

(
X̄− X̄′) ej = 0 is verified, or in other words, the

node has a unique solution verifying the constraints in (1).
Definition 2: A target node xj is uniquely localizable iff

for every h > 2 and for every pair of h-dimensional solutions
X̄ and X̄′, the equation

(
X̄− X̄′) ej = 0 is verified.

Unique localizability implies 2D unique localizability as the
network has at least one 2-dimensional solution.

Definition 3: The network is 2D uniquely localizable iff all
its target nodes are 2D uniquely localizable.

Definition 4: The network is uniquely localizable iff all its
target nodes are uniquely localizable.

B. SDP Formulation

The SDP formulation of the network localization problem
is derived in [9]. We will present it here for self completeness
of the paper.

Problem (1) can be written in matrix form as follows:

find X ∈ R2×n,Y ∈ Rn×n,
s.t. eT

ijYeij = d2
ij ∀(i, j) ∈ NT

(ak;−ej)T Z(ak;−ej) = d̄2
kj ∀(k, j) ∈ NA

Y = XT X,

(3)

where X = [x1, . . . ,xn] and Z is defined as follows:

Z =
[

I2 X
XT Y

]
. (4)

Problem (3) is a nonconvex optimization problem. It can
be transformed into a semidefinite program by relaxing the
equality constraint Y = XT X into a semidefinite condition
Y−XT X � 0, which is equivalent to Z � 0. Then, we arrive
at the following SDP problem:

minimize 0,
s.t. Z1:2,1:2 = I2

(0; eij)T Z(0; eij) = d2
ij ∀(i, j) ∈ NT

(ak;−ej)T Z(ak;−ej) = d̄2
kj ∀(k, j) ∈ NA

Z � 0.
(5)

C. Localizability Test

Let Z̄ be a solution of problem (5), then
2 ≤ rankZ̄ ≤ 2 + n. A max-rank solution is a solution
that has the highest rank among all feasible ones. Such a
solution can be computed by means of an interior-point
algorithm.

Theorem 1 ([7]): Let Z̄ be a max-rank solution of problem
(5), then the following statements are equivalent:

• The network is uniquely localizable.
• The rank of Z̄ is equal to 2.
• Z̄, represented as (4), satisfies Ȳ = X̄T X̄.
Thus, by finding a max-rank solution of (5), we can answer

the question whether the network is uniquely localizable. We
can also test the unique localizability of the different nodes
according to the following important properties [7]:

• Node xj is uniquely localizable iff Ȳjj − ‖x̄j‖2 = 0,
where Ȳjj is the (j, j) entry of Ȳ and x̄j is the jth

column of X̄.
• Node xj is not uniquely localizable iff Ȳjj−‖x̄j‖2

> 0.
We shall call this test the simple SDP-based test in the

sequel.
According to definitions 1 and 2, the uniquely localizable

nodes constitute only a subset of the 2D uniquely localizable



nodes, and the simple SDP-based test cannot detect all these
latters. Fig. 2 provides an example.

III. IMPROVING THE LOCALIZABILITY TEST

In this section, we develop a new solution for improving the
identification of the 2D uniquely localizable nodes. We shall
call it the iterative SDP-based algorithm (I-SDP).

We begin by showing how to reduce the rank of the SDP
solution for a network of 3 nodes by a simple modification of
the objective function of the SDP problem (5).

A. Rank Reduction via Scalar Product

We consider the network of Fig.1 consisting of two anchor
nodes a1 and a2 and one target node x1.

By solving the SDP problem (5) corresponding to this
network, we obtain a matrix Z̄ of rank 3, as node x1 is not
uniquely localizable :

Z̄ =
[

I2 x̄1

x̄T
1 Ȳ

]
, (6)

where Ȳ > ‖x̄1‖2.
This result can be seen as if the SDP solver finds a 3-
dimensional vector

(
x̄1;±

√
Ȳ − ‖x̄1‖2

)
and the computed

location x̄1 is the orthogonal projection of this vector on the
plane of the network.

Let a1,2 = a2 − a1. The constraint of problem (5)

(ak;−1)T Z(ak;−1) = d̄2
k1 k = 1, 2 (7)

is verified by Z̄, which implies that 〈a1,2, x̄1〉 = 〈a1,2,x1〉 =
constant, or in other words, the computed location lies on
the line perpendicular to the segment joining a1 and a2 and
passing by the true position x1.

Let a⊥1,2 be a vector perpendicular to the vector a1,2.
The scalar product

〈
a⊥1,2, x̄1 − a1

〉
is maximized when Ȳ =

‖x̄1‖2. Thus, we can obtain a solution in the plane of the
network and reduce the rank of Z̄ to 2 by modifying the
objective function of (5) to one of the following two linear
functions:

minimize ±
〈
a⊥1,2,X

〉
. (8)

Node x1 is not 2D uniquely localizable. The two solutions
obtained for each of the objective functions (8) are plotted in
Fig. 1. These solutions, denoted by x̄1 and x̄′1, verify Ȳ −
‖x̄1‖2 = 0 and Ȳ′ − ‖x̄′1‖2 = 0.

B. Iterative SDP-Based Algorithm

We consider a network deployed in a plane with given
anchors locations and distance measurements.

In the first step of the algorithm, the SDP problem (5) is
solved and the uniquely localizable target nodes, identified by
the simple SDP-based test described in II-C, are promoted to
anchor nodes. Then, for a target node xj connected to two
anchor nodes ak and al, the following steps are processed:

• The two SDP problems with the following two objective
functions (9) are solved:

minimize ±
〈
a⊥k,l,Xej

〉
. (9)
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Fig. 1. A network of one target node connected to two anchor nodes.

The obtained solutions are denote by Z̄ and Z̄′.
• If Ȳjj−‖x̄j‖2 = 0 and Ȳ′

jj−
∥∥x̄′j∥∥2

> 0 (or vice versa),
then node xj and all the nodes xi verifying Ȳii−‖x̄i‖2 =
0 are 2D uniquely localizable. These nodes are promoted
to anchor nodes.

• Otherwise the node is omitted but it can be revisited later.
The algorithm performs iteratively by testing all the targets
connected to two anchors until no more targets can be pro-
moted. The different steps are summarized in Table I.

TABLE I
ITERATIVE SDP-BASED ALGORITHM

0: Solve the SDP problem (5)
1: Promote uniquely localizable targets to anchors
2: Find the set S of targets connected to two anchors
3: For each target ∈ S
4: Solve the 2 SDP problems with objective functions (9)
5: If the selected target is 2D uniquely localizable
6: Promote the identified targets to anchors
7: Go to 2
8: End If
9: End For

C. Examples

Here, we provide two examples to show the efficiency of the
I-SDP algorithm in situations where the graph rigidity test and
the simple SDP-based test fail in identifying uniquely solvable
nodes.

In Fig. 2, the two target nodes are non-uniquely localizable
although the network is globally rigid. By applying the I-SDP
algorithm, we can show that they are 2D uniquely localizable.

In Fig. 3, node x1 is not uniquely localizable and does not
belong to a globally rigid subgraph, while it is 2D uniquely
localizable and can be identified and correctly localized by the
I-SDP algorithm.

IV. LOCALIZABLE NODES OCCURRENCE

To illustrate the performance of the I-SDP algorithm, Monte
Carlo simulations were performed for different network sizes
N by taking m = 3 anchors and the connectivity range R =
0.4. 1000 networks are uniformly drawn for each value of N .
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Fig. 2. A globally rigid network and 2D uniquely localizable but not uniquely
localizable. Node x2 is not aligned with nodes a2 and a3 and the network
can have a 3-dimensional solution verifying (2).
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Fig. 3. Node x1 does not belong to a globally rigid subgraph and is
not uniquely localizable but it is 2D uniquely localizable. A 3-dimensional
solution can be obtained by rotating x1 around the axis formed by a1 and
a2.

The nodes are uniformly distributed inside a square area of
1× 1.

Fig. 4 presents the probability distribution of the number
of nodes that are identified as uniquely solvable (2D uniquely
localizable) using the I-SDP algorithm, and the probability
distribution of the number of uniquely localizable nodes iden-
tified by the simple SDP-based test. The two tests have been
applied to the same generated networks.

We can see that when applying the I-SDP, the probability
that all the nodes are uniquely solvable is increased and more
uniquely solvable nodes are detected

We can also notice that the occurrence of the nodes that are
2D uniquely localizable but not uniquely localizable is small.
For N = 20 nodes, about 20% of the networks are found to be
2D uniquely localizable (all the nodes have a unique solution),
and about 17.5% are uniquely localizable, thus, 2D uniquely
localizable networks are uniquely localizable in at most 88%
of the time for this scenario.

V. LOCALIZATION ACCURACY

In this section, the accuracy of the locations computed by
the simple SDP and the I-SDP is investigated in terms of mean
location error.

The simulation scenarios are similar to those of the previous
section except that the considered networks are connected. The
nodes that are correctly localized by the I-SDP but not by the
simple SDP are called ‘uncommon nodes’, these nodes are
2D uniquely localizable but not uniquely localizable. And the
nodes that are not correctly localized by both methods are
called ‘common nodes’.

Fig. 5 depicts the mean location error as a function of the
network size N . We can see that the mean location error
of uncommon nodes is smaller than that of common nodes.
The uncommon nodes are 2D uniquely localizable and are
connected to more nodes than the common nodes. As this error
is small, we can deduce that SDP based localization methods
provide a good starting point to apply a descent optimization
solution.

We can also remark that the mean location error does not
decrease with N but we mention that the occurrence of nodes
having errors on their locations decreases with N as can be
deduced from Fig. 4.

We also applied the variant of the SDP formulation with
edge-bounding described in [3], where additional constraints
are introduced on unmeasured distances in order to mitigate
the flip ambiguities. The results are also plotted in Fig. 5
where we can notice that the error is decreasing with N for
the common nodes as the number of constraints is increasing
with N .

VI. CONCLUSION

In this paper, we developed an iterative algorithm based
on SDP for improving the identification of the 2D uniquely
localizable nodes. We used this algorithm and the simple
SDP to study the statistical occurrences of the different kinds
of nodes for specific scenarios. The computation of statis-
tical occurrences can be also useful when deciding on the
needed number of anchor nodes or communication ranges that
guarantee a high probability of unique solvability. We also
investigated the mean location errors and showed that 2D
uniquely localizable nodes have small errors when they are
localized by the simple SDP although they are not detected as
uniquely solvable.

This work can be extended to 3-dimensional networks by
selecting a node connected to 3 non-collinear anchor nodes at
each iteration of the I-SDP.

It would be interesting to use the SDP based algorithms to
study the robustness of the location estimates when distance
measurements are erroneous.
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Fig. 4. Distribution of the number of uniquely solvable target nodes detected
using the simple SDP and the I-SDP tests for different network sizes N . The
number of anchor nodes is 3.
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