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Abstract—In this paper, we consider a broadcast transmission
from a source to multiple destinations with an OFDM-based
system. In order to improve the broadcast services of a cellular
system, we consider the use of relays with Dynamic Decode and
Forward protocols allowing the source to ignore the existence of
relays in the system. A new algorithm executed at the relay
is proposed. It allows for maximizing the diversity order at
the destinations side by selecting the best relaying protocol and
modulation size as function of the relay correct decoding time.
No feedback is assumed on any link between the source, relays
and destinations.

I. INTRODUCTION

In cellular networks, broadcasting is a fundamental tool
for transmitting control signals conditioning the overall
system performance. Furthermore, multimedia broadcast-
ing/multicasting has gained interest for outdoor and home
communications, which gives another framework to this study.
As broadcast transmission is generally designed to provide
a given quality of service to the terminal experiencing the
worst link quality, they are by essence diversity limited. Thus,
we investigate the diversity order improvement by the help of
relays. Moreover, as several relays will behave independently
one from each other, we assume that the relay-unaware source
defined in this paper transmits as if no relays were lying in
the system.

Among the wide variety of relaying protocols, the dynamic
decode and forward (DDF) protocol [1] has the appealing
property of taking the best benefit from the relay use [2],
[3], [4], [5], [6]. As soon as the relay correctly decodes
the message sent by the source, which occurs at a random
time, a joint transmission scheme between the source and the
relay is received by the destination. The transmission ends
as soon as the destination correctly decodes the message,
the DDF protocol thus applies more naturally to closed-loop
transmissions.

In this paper, we design adapted DDF protocols for im-
proving the diversity order of braodcast transmissions to as
many destinations as possible, without any feedback or control
signalling specific to relaying between the source and relays.
In section II, the transmission scheme and channel model are
presented. In section III, we present the theoretical toolbox
needed for understanding the diversity behavior of the coded
system including DDF relaying. In section IV, we introduce a
criterion for selecting the modulation order at the relay, as a
function of the relay correct decoding time. Finally, in section

V, we present some simulation results illustrating the gain
brought by the proposed coding strategies.

II. SYSTEM MODEL AND PARAMETERS

Let us consider a source S, one of the relays R and one of
the destinations D. The transmission of one information word
follows a Bit-Interleaved Coded Modulation (BICM) structure
[7], i.e., an information word b, of length K bits, is encoded
into an interleaved codeword of a binary code C, which
interleaved version c is modulated using a QPSK discrete
modulation carrying mS = 2 coded bits. The codeword c
is sent during a frame, which is segmented into Nb sub-
frames, the length of the i-th sub-frame being Bi coded
bits, and B1 ≥ K. A Cyclic Redundancy Check (CRC)
code is embedded in the information word, allowing for the
destination D to try to decode the concatenation of the sub-
frames, and stops listening to the source S as soon as the
CRC check is correct. As no acknowledegment is sent from
the destination D to the source S, the whole frame is sent
and the performance of one frame transmission is designed to
provide a target quality of service to the worst users.

The relay R receives data sent by the source during a
phase 1 of the DDF protocol, during which the relay keeps
listening to the source as soon as decoding failures occur.
The relay R then switches into a phase 2 when the CRC
check is correct, and transmits additional redundancy with
a 2mR -QAM modulation to D on the same frequency and
time resource as the source S. Thus, the relay R transmits
BimR/mS coded bits during the i-th sub-frame. We note
L1 the number of coded bits transmitted by the source in
the first phase, and L2 and LR respectively the number of
bits transmitted by the source and by the relay in the second
phase. The codewords of C and the additional redundancy sent
by the relay are for example generated from a rate matching
algorithm associated to a Rate-1/3 turbo-code, as in the 3GPP-
LTE standard. We call M the index of the subframe after
which the relay could correctly decode the information word.
Consequently, the addition of the source and relay signals is
received at the destination during Phase 2.

The frame and sub-frame structure, the phases of reception
and transmission of the relay, and the decoding failures at the
relay are illustrated in Fig. 1.

A classical receiver is applied at the destination, which first
converts the received symbols into soft estimates of the coded
bits, which are then given to the input of the soft-input decoder.
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Fig. 1. Frame structure of the open-loop DDF relaying protocol

We assume that the destination has the ability to detect whether
the relay is activated or not. This can for example be achieved
by the transmission of dedicated pilot or control signals from
the relay.

We consider quasi-static flat-fading channels, i.e., the chan-
nel remains constant during at least the transmission of one
codeword, and is independent from one frame transmission
to another. The fading coefficients αSD between the source
and the destination and αRD between the relay and the des-
tination are complex-gaussian distributed with zero mean and
unity variance. A complex-gaussian noise of variance 2N0 is
added at the destination receive antenna. The values SNRSD,
SNRSR and SNRRD respectively denote the signal-to-noise
ratio of the link from the source to the destination, the source
to the relay, and the relay to the destination. As a remark, the
unbalance between SNRSD and SNRRD theoretically does
not change the diversity order of the system. However, it is
straightforward to understand that if SNRSD >> SNRRD,
the relay has no impact on the observed performance. From a
system level point of view, the relay is assumed to be placed,
or selected among other terminals, such that SNRSD '
SNRRD for the lowest values of SNRSD.

As mentioned before, the fact that the relay will transmit
or not must be completely transparent to the source. Indeed,
as the relay might only be beneficial to a portion of users, the
source must not adapt itself according to the relay state. This
assertion is meaningful in a case where several relays cover
different zones of the source coverage area. We call a source
satisfying this property a relay-unaware source. Thus, two
different strategies are selected from the existing well-known
DDF protocols for allowing a source to be relay-unaware. The
phase 2 can be seen as a 2× 1-MIMO scheme with two non
co-localized antennas, the first antenna being the transmission
from the source and the second antenna from the relay.

• The first studied protocol for phase 2 is a transposed
version of the distributed Alamouti (DA-DDF), where the
pair of symbols [z1, z2] is transmitted by the source such
as without relaying while the pair of symbols [z∗2 ,−z∗1 ]
is transmitted by the relay with mR = mS [8]. At
the destination D, the symbols received from the relay
and the source in phase 2 are combined by the detector
into soft estimates on the coded bits, and the decoded
codeword is not longer than without relaying.

• The second studied protocol is a spatial division mul-
tiplexing (SDM-DDF) for the phase 2, the first data
stream corresponding to the transmission from the source

such as without relaying; and the second data stream
to the transmission from the relay. In practise, applying
the same rate matching algorithm as the one used by
the source to the known K information bits, the relay
generates additionnal coded bits different from those sent
by the source. In other words, at the destination D, the
symbols received from the relay and the source in phase 2
are converted by the detector into different soft estimates
on the coded bits, and the decoded codeword is longer
than without relaying. See [9] for the achievability of
close to the outage probability performance on a 2 × 1
MIMO channel.

Thanks to a careful design of the interleaver of the BICM,
the soft estimates of the coded bits can be sorted into channel
blocks, each channel block being associated to one fading
random variable of the channel. The equivalent block-fading
channel of the two studied protocols and their impact on the
coded performance will be detailed in the following section.

III. DIVERSITY ANALYSIS OF RELAYING PROTOCOLS
UNDER ERROR CORRECTION CODING

In this section, we present theoretical results on the maximal
diversity order achievable by a coded system on the equivalent
block-fading channel model seen between the output of the
error correcting code encoder and the input of the decoder.
These results will be used to determine the modulation order
and relaying protocol at the relay in the next section.

A. Bound on the diversity for variable length independent
block-fading channel

The upper bound on the diversity order of a coded
modulation transmitted on a block-fading channel of equal
length blocks has been derived in [10]. Due to the dynamic
decoding time at the relay, we propose a generalization of
the Singleton bound on the diversity order to unequal length
block-fading channels:

Proposition: The diversity obtained after decoding a
rate-Rc linear code transmitted over a B(L) independent
block-fading channel, where L = (L1, . . . , LN ) is the vector
of block lengths and where the fading coefficient of the
blocks are independent one from the others, is upper-bounded
by dB(L) = N − i + 1 where i is given by the following
inequality:

i−1∑
j=1

Ls(j) < Rc

N∑
j=1

Lj ≤
i∑

j=1

Ls(j) (1)



where s() denotes a sorting operation such that
∀j, Ls(j) ≤ Ls(j+1).

Proof: Let K = Rc

∑N
j=1 Lj be the number of information

bits per codeword. The diversity order of the coded modulation
is defined by the lowest diversity order observed among
all pairwise error probabilities. Consider permutations Ω of
strictly positive integers lower than N . If i is the maximal
integer, function of Ω, K, and L, such that

∑i−1
j=1 LΩ(j) < K,

for any code structure, selecting only the coded bits of the
blocks of index in {Ω(1), . . . ,Ω(i)} builds a null-Hamming
distance code. Thus, there exists at least one pair of codewords
exhibiting a diversity order lower or equal to N − i + 1.
Furthermore, the configuration Ω maximizing i gives the
lowest diversity order N − i + 1 among all pairwise error
probabilities, which is obtained by choosing Ω = s, sorting
the blocks in increasing length order. �

B. Bound on the diversity for Matryoshka channels

In [11], an other class of block-fading channel has been
introduced to derive the bounds on the diversity order of coded
system over multi-relay channels. The Matryoshka channel
M(D,L) is defined by N blocks, where L = (L1, . . . , LN )
is the vector of block lengths and D = (D1, . . . , DN ) is
the vector of diversity order intrinsic to each block. The
Matryoshka channel is characterized in that the fading random
variable of the i-th block is a component of the fading random
variable of the i−1-th block which has a larger diversity order.

The diversity observed after decoding a rate-Rc linear code
transmitted over a M(D,L) channel is upper-bounded by
δM(D,L) = Di where i is given by the following inequality:

i−1∑
k=1

Lk < Rc

N∑
k=1

Lk ≤
i∑

k=1

Lk (2)

It has to be noted that the difference between an independent
block-fading channel and a Matryoshka block-fading channel
comes from the sorting of the block lengths in the computation
of the bound, and it is easy to show that δM(D,L) ≥ δB(L).

C. Diversity analysis of the coded DA-DDF

During the phase 2 of the DA-DDF protocol, the symbols
transmitted by the source and the relay are combined into the
same soft estimates of the coded bits, which are dependent of
α2

SD +α2
RD. The soft estimates of the L1 coded bits of phase

1 are only dependent of α2
SD. Thus, the equivalent block-

fading channel seen by the code is a M({2, 1}, {L2, L1})
Matryoshka channel and the code rate of the code decoded at
the destination is Rc = K/(L1+L2), as the received codeword
is not longer than without relaying. If the relay is assumed to
correctly decode the information word after the M -th block,
then L1 =

∑M
i=1Bi and L2 =

∑Nb

i=M+1Bi. From 2, the

diversity order δDA(M) is given by

K ≤
Nb∑

i=M+1

Bi, ⇒ δDA(M) = 2 (3)

K >

Nb∑
i=M+1

Bi, ⇒ δDA(M) = 1 (4)

D. Diversity analysis of SDM-DDF

It is well known that a BICM transmitted over a MIMO
channel with spatial multiplexing can be modeled as an
independent block-fading channel from the decoder point of
view (e.g., [9]), where the number of blocks is equal to the
number of streams of the spatial multiplexing, and the fading
random variables are independent one to each other.

When using the SDM-DDF protocol, the L1 + L2 coded
bits sent by the source see the fading random variable αSD,
whereas the LR coded bits independently sent by the relay see
the fading random variable αRD. Thus, the equivalent channel
is an independent block-fading channel B(L1 + L2, LR) and
the code rate is Rc = K/(L1 + L2 + LR), as the received
codeword is longer than without relaying.

Whenever the relay correctly decodes the information word,
the number of coded bits seeing the αSD fading coefficient
remains constant and equal to L1 + L2 =

∑Nb

i=1Bi. If the
relay is assumed to correctly decode the information word
after the M -th block, then LR =

∑Nb

i=M+1BimR/mS .
Taking into account that B1 ≥ K, and from 1, the diversity

order δSDM (M) is given by

K ≤
Nb∑

i=M+1

Bi
mR

mS
⇒ δSDM (M) = 2 (5)

K >

Nb∑
i=M+1

Bi
mR

mS
⇒ δSDM (M) = 1 (6)

As a remark, we restrict the study to one relay in this paper,
but all the theoretical material needed to understand and design
a multi-relay system is presented in this section, and will be
the topic of future work, as well as the impact of larger orders
of frequency selectivity.

IV. PROTOCOL AND MODULATION SELECTION AT THE
RELAY

The diversity analysis of the studied DDF protocols shows
us that, depending on the segmentation strategy of the blocks
and on the correct decoding time at the relay, the frame
error probability pe(M) exhibits different diversity orders.
The sooner the relay activates for transmission, the better the
chance to achieve full diversity is. However, the source to relay
link also suffers from fading. That makes the correct decoding
time M dynamic. Let us define PR(M) the probability of
correct decoding at the relay after the M -th transmitted block,
then the average probability of error of the transmission is

Pe =
Nb∑

M=1

PR(M)pe(M) (7)
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Fig. 2. Algorithm executed at the relay.

By maximizing the diversity order of each discrete input out-
age probability pe(M), the average error rate Pe is decreased.
As a remark, PR(M) is a function of SNRSR while pe(M)
is a function of SNRSD and SNRRD. Thus, the relays can
be deployed for improving the coverage area of broadcast
services, or for increasing the data rate of broadcasting at the
cell edge.

The probability of correct decoding at the relay after re-
ceiving the M -th block of data is computed from the mutual
information I(SNRSR, αSR) of the data link between the
source and the relay as follows

PR(M) = Pr

(
M−1∑
i=1

Bi <
KmS

I(SNRSR, αSR)
≤

M∑
i=1

Bi

)
(8)

Let us remark that mR ≥ mS ⇒ δSDM (M) ≥ δDA(M)
with equality for mR = mS , which means that the SDM-
DDF protocol exhibits full diversity under configuration where
the DA-DDF does not. However, when using SDM-DDF
protocols, the receiver must be able to recover the diversity
of the coded SDM scheme, which is not feasible with low
complexity SISO detectors. This last remark is in favor of
DA-DDF protocols for complexity-limited devices.

Let us consider that the segmentation of the codeword is
fixed and known to the receivers. When the relay correctly
decodes the information word after the M -th transmission
block, it can easily compute the minimal mRopt that will
provide full diversity for the SDM −DDF protocol, i.e.

mRopt =

⌈
mSK/

Nb∑
i=M+1

Bi

⌉
(9)

Additionally, if mS = mRopt, the DA-DDF protocol can
be used instead of the SDM-DDF protocol for reducing the
receivers complexity or power consumption.

We now assume for simplicity that the blocks Bi for i > 1
have an equal length of B1/γ coded bits. Thus, mRopt(γ,Nb)
becomes

mRopt(γ,Nb) =
⌈
γ

mS

Nb −M
K

B1

⌉
(10)

As a remark, if the modulation size at the relay is limited
by mR ≤ mRmax, then cases where mRopt > mRmax cannot
achieve full diversity. The protocol and modulation selection
executed at the relay are summarized in Fig. 2.

V. SIMULATION RESULTS

In this section, we consider the outage probability of the
channel with discrete modulation input, as it follows the
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Fig. 3. Discrete input Outage Probability of DA-DDF for γ = 3, Nb = 7,
mS = 2.

bounds on the diversity order of the equivalent block-fading
channel [12]. We consider that K/B1 = 1, i.e., that the first
block contains only data. The reference SNR is defined as
SNRSD, the available transmit power at the base station for
broadcasting being the more important limiting resource of
the system (i.e., we consider that the relay load is low).

Fig. 3 and Fig. 4 illustrate the performance obtained when
γ = 3, Nb = 7, and SNRSD = SNRRD. Thus, if M = 7,
the relay never transmits additional redundancy. The outage
probabilities with QPSK input and DA-DDF or SDM-DDF
are shown as a function of the correct decoding time M of
the relay.

From equations (3) and (5), we show that the relay brings
a gain of diversity only if M < 5. From (10), we see that
the full diversity order can be achieved with SDM-DDF and
M = 5 only if mR ≥ 3. Thus, if the relay correctly decodes
the data at the 5-th block, we will choose to transmit additional
redundancy with a 16-QAM modulation, which full diversity
performance curve is shown in Fig. 4.

For M = 6, the relay must choose mR ≥ 6, which justifies
why the performance with 16-QAM input does not reach the
diversity order 2 anymore while the performance with 64-
QAM input does. For M = 7, no diversity improvement can be
achieved. Fortunately, the performance for M = 7 is designed
for the worst destinations and a good positioning or selection
of the relay will make the probability of not decoding before
M = 7 negligible.

In Fig. 5, we make the signal-to-noise ratio between the
source and the relay SNRSR vary. We assume that the relay
experiences a diversity-1 flat fading channel. The probability
PR(M) of correct decoding of the relay after the M -th block
transmission by the source is evaluated as in equation (8), and
multiplies the outage probabilities of Fig. 3 and Fig. 4 as in
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equation (7).
From the previous section, we choose to use the DA-DDF

protocol for M < 5. The SDM-DDF with 16-QAM at the
relay is selected as the only way to achieve full diversity for
M = 5 and the SDM-DDF with a 64-QAM at the relay as
the only way to achieve full diversity for M = 6. First, we
observe that for very low SNRSR values (< 10dB), few gain
is observed from relaying, the slope-one pe(Nb) performance
curve dominates the final performance. If SNRSR ≥ 10dB,
the diversity order brought by the relay and the smart selection
of the coding scheme and modulation size drastically improves
the performance. It has to be noted that since pe(Nb) > 0,
the theoretical diversity of the system is one. If pe(Nb) is
sufficently low, the asymptote of the performance is met for
very low error rates, which makes high SNRSR performance
behave as full diversity systems. Furthermore, it has to be
noted that if SNRSR = 10dB, the relay suffers from an error
rate of around 10−1, which is a worst case of location of
the relay (the open-loop system is designed such that worst
users suffer from an error rate below 10−2). Even in that case,
the gain brought by DDF-relaying is around 8dBs. We recall
that the presented results are shown for equals SNRSD and
SNRRD and that a fair evaluation of the gain brought by the
presented technique can only be done with the help of a system
level simulator, which will be the next step of this study.

VI. CONCLUSIONS

In this paper, we have shown the positive impact of using
DDF relaying protocols in order to improve the performance
of open-loop transmissions. The relay selects the transmission
mode depending on the time it correctly decodes the message
and the presented techniques allow for the source to be
relay-unaware, i.e., to ignore the relay reception/transmission
state. This last property is particularly relevant for broadcast
services. The choice of the coding scheme and modulation size
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is made in order to maximize the diversity order for the worst
users from theoretical limits of coding on block-fading and
Matryoshka channels. In future works, the impact of multiple
relays and the evaluation in system level simulators will be
investigated.
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