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Abstract—We address the problem of transmission of informa-
tion over the AWGN channel using lattices. In particular, we will
deal with previously introduced LDA lattices which are obtained
by Construction A from LDPC codes over the finite field Fp. We
will show how to build a particular ensemble of LDA lattices
related to bipartite graphs with good expansion properties. We
investigate the quality of this family under lattice decoding and
show that a random member in it can be reliably decoded for
any value of the channel noise variance up to Poltyrev limit.
Values of p and the parameters for which optimal performance
is guaranteed under lattice decoding are in accordance with
the optimal parameters found experimentally under iterative
decoding.

I. INTRODUCTION

We are interested in a family of integer lattices suitable
for decoding in high dimensions that are obtained from non-
binary LDPC codes and Construction A and called accordingly
LDA lattices. These lattices were first envisaged in [6] and
reintroduced in [4] where an efficient iterative decoder was
proposed: their performance has been encouraging, being in
a number of contexts at least as good as all other families of
lattices decodable with reasonable complexity.

The question we address in the present paper is how good
the intrinsic quality of the LDA family is under full lattice
decoding. We will show that with a proper choice of the
underlying LDPC codes, LDA lattices can be reliably decoded
for any value of the AWGN channel noise variance, up to
Poltyrev limit [12], which is the maximum possible when the
decoder is unaware of the shaping region. This analysis is
motivated also by the well-known results in [11] and [7] about
Construction A lattices and constitutes the natural continuation
of the work started in [5]. One important feature of the
lattice family we build, is that the parity-check matrices of
the underlying LDPC codes have bounded row and column
degrees. This result contrasts sharply with its analog for binary
LDPC codes. Indeed, binary LDPC codes with parity-check
equations of bounded weight have been known not to achieve
capacity since Gallager [10]. Previous studies, of non-binary
LDPC codes for modulo additive channels [8] and of LDA
lattices [5], require parity-check equations with weight tending
to infinity to achieve capacity.

The structure of the paper will be as follows: in Section II
we give some background on lattices in general and the
construction of LDA lattices in particular. In Section III we
state and discuss our main result and its implications for
practical decoding. In Section IV we introduce a particular
family of bipartite graphs and specify some technical expan-
sion properties that characterise it. These graphs will serve to
define the skeleton of the LDPC code parity-check matrix, i.e.
the underlying binary matrix. Finally, in Section V we relate
these graphs to a random LDA lattice ensemble and prove that
the latter achieves the Poltyrev limit.

II. LDA LATTICES

We start with a brief introduction to lattices and set some
notation. Then we recall Construction A [3] and the definition
of the family of LDA lattices [4].

Let B be a set of n linearly independent vectors of Rn;
an n-dimensional lattice Λ ⊂ Rn is the set of all linear
combinations with integer coefficients of the vectors of the
basis B = {B1, . . . , Bn}:

Λ =

{
n∑
i=1

ziBi, zi ∈ Z

}
. (1)

The matrix G of size n × n whose rows are the vectors
of a basis, is called a generator matrix for Λ. The volume
of a lattice is defined as Vol(Λ) := |det(G)|. For detailed
background on lattices we refer the reader to [3].

We now recall Construction A, which is a practical way
to build a lattice from a linear code. More precisely, let
C be a linear code of length n over the finite field Fp.
Codewords of C may be identified with integer points in the
cube [0, . . . , p)n. Using this identification, we say that Λ is
obtained by Construction A from C if

Λ = C + pZn = {x = c+ pz, c ∈ C, z ∈ Zn} (2)
= {x ∈ Rn | ∃c ∈ C, x ≡ c mod p}. (3)

Note that this is Construction A in a restricted sense. It can
be generalized by replacing pZn with other lattices [3]. The



LDA definition in [4] uses a more general version of Construc-
tion A, but in the present work we stay with Construction A
in the narrow sense. A Low-Density-construction-A lattice or,
briefly, an LDA lattice is a lattice obtained by Construction A
from a code C with the peculiarity that C is an LDPC code,
that is, its parity-check matrix is sparse [10].

III. LATTICE DECODING OF LDA LATTICES

A. AWGN Channel and Lattice Decoding

Let Λ ⊆ Rn be an LDA lattice with generator matrix G. In
this scenario, uncoded information is represented by an integer
vector z ∈ Zn, which is coded into the lattice point x = zG ∈
Λ. This point is sent over the AWGN channel, whose output is
the real n-dimensional point y = x+η, with η = (η1, . . . , ηn).
The ηi’s are n i.i.d. normally distributed random variables of
variance σ2.

Following other authors (e.g. [16], [1], [14] and [15]), we
treat the case of lattice decoding (or decoding of the infinite
lattice). This means that the the set of codewords makes up
the whole lattice. The lattice decoder simply finds the lattice
point x̂ ∈ Λ closest to the received point y. Of course, y is
correctly decoded if and only if x̂ = x. We define the error
probability as Pe = P{x̂ 6= x}. By the symmetry of the lattice,
this probability is the same for every x ∈ Λ and coincides with
the average error probability.

In [12], Poltyrev adapted the concept of capacity to this set-
ting. When the set of codewords is unbounded, usual capacity
loses its sense. Poltyrev proposed the notion of generalized
capacity, which concretely implies that there exists a lattice
in big enough dimension n that can be decoded with arbitrarily
small decoding error probability Pe if and only if the noise
variance of the channel is

σ2 <
Vol(Λ)

2
n

2π e
=: σ2

max. (4)

We refer the reader to [12] for details. Notice that, for an LDA
lattice, σ2

max = p2(1−k/n)/2πe if k is the dimension over Fp
of the LDPC code.

We shall say, with a slight abuse of language, that a family
of n-dimensional lattices Λn achieves Poltyrev capacity if, for
every value of the channel noise variance smaller than σ2

max,
a random lattice of the family of big enough dimension n can
be decoded with an arbitrarily small error probability.

B. The Main Result

Our main result reads:

Theorem 1. There exists a Poltyrev-capacity-achieving family
of LDA lattices Λn = Cn + pZn such that the parity-check
matrix of the codes Cn has row and column degrees bounded
from above by constants.

One should ask what practical values of the constants we
can achieve. Also of importance is the value of the prime
number p relative to the lattice dimension n. When proving
theoretical results on lattices obtained from Construction A,
the size of p can be difficult to control and results in large

values of p, namely p > n, that we would wish to avoid for
practical decoding. This phenomenon occurs, for example, in
[7] and [9]. We manage to achieve the Poltyrev limit with
p = nλ, λ < 1. Experiments reported in [4] tend to indicate
that optimum results under iterative decoding are obtained for
p ≈ n1/2: we have been able to confirm that for p ≈ n1/2

lattice decoding can go all the way to the Polyrev limit.
Furthermore, it is remarkable that the constants involved in

the Theorem are definitely realistic; for example, for codes
of rate 1/2 and p ≈ n1/2, the required column degree of
the parity-check matrix needed to guarantee that the LDA
lattices achieve capacity is only 7. The detailed result leading
to Theorem 1 and that enables one to compute constants and
values of λ for p = nλ will be given in Theorem 3 below.

IV. GRAPH-THEORETIC TOOLS

We will require our LDPC codes to have Tanner graphs
( [13], pag. 51) with expansion properties. In this section
we state the, somewhat non-standard, expansion properties of
bipartite random graphs that we need.

Let G = (V, P,E) be an undirected bipartite graph; V ∪P is
its set of vertices and E its set of edges. Later, V and P will
stand for the sets of variable and check nodes respectively.
Let |V | = n, |P | = n(1 − R), for some 0 < R < 1. By
now, parallel edges are accepted, that is, there might be two
or more edges connecting the same two vertices.

If S is a subset of V , then we define N(S) to be the
neighbourhood of S, i.e. the set of vertices of P incident to
a vertex of S. The neighbourhood N(T ) is similarly defined
for a subset T of P .

From now on, we will consider only graphs with the
following variation of the biregularity property: the number
of edges incident to any single vertex of V (resp. P ) has
constant cardinality ∆V (resp. ∆P ). Consequently, the neigh-
bourhood of any single vertex of V (resp. P ) has cardinality
at most ∆V (resp. ∆P ). If the graph has no parallel edges,
these cardinalities are exactly ∆V and ∆P and the graph
is biregular, according to the standard definition. Denote by
F(n,R,∆V ,∆P ) the family of graphs just defined. Note that
biregularity implies the relations:

n×∆V = n(1−R)×∆P and ∆P =
∆V

(1−R)
. (5)

We are interested in some particular expansion properties of
this kind of graphs. Let h(·) be the binary entropy function:
for all 0 < u < 1, h(u) = −u log2 u− (1−u) log2(1−u) and
h(1) = h(0) := 0. Let α and A be two constants such that

1 < α ≤ A < ∆V − 1. (6)

We say that a graph is (α,A)-good if there exist β and ε



satisfying

• 1

(1−R)
< β <

2

(1−R)
, (7)

• 0 < ε ≤ min

{
(1−R)

2A
,

(1−R)(∆V −A− 1)

∆V +R− 2

}
, (8)

• ∆V >
(1−R)h

(
Aε

(1−R)

)
+ h(ε)

h(ε)− Aε
(1−R)h

(
(1−R)
A

) (9)

and for which

1. If S ⊆ V and |S| ≤ dεne, then |N(S)| ≥ A|S|. (10)

2. If S ⊆ V and |S| ≤
⌈
n(1−R)

2α

⌉
, then |N(S)| ≥ α|S|.

(11)

3. If T ⊆ P and |T | ≤ n(1−R)

2
, then |N(T )| ≥ β|T |.

(12)

All three conditions above mean in quantitatively different
ways that all “small enough” subsets of V or P have “big
enough” sets of neighbours.

We have set the necessary notation to state the following
lemma:

Lemma 2. Let n,∆V ∈ N, with ∆V ≥ 2. Let 0 < R < 1
and let G be a graph in F(n,R,∆V ,∆P ), chosen uniformly at
random in the family. Fix α and A satisfying (6). Furthermore,
suppose that

∆V > max

 (1−R) + h
(
1−R
2α

)
h
(
1−R
2α

)
− 1

2h
(

(1−R)
α

) , 2α2 + 2α+R− 2

2α− 1

 .

(13)
Then

lim
n→∞

P{G is not (α,A)-good} = 0. (14)

Due to lack of space, we do not provide here a proof of the
previous lemma, that can be obtained with similar techniques
to the ones used in [2]. Nevertheless, the proof has to be
derived from scratch because the results of [2] are not precise
enough for our purposes.

V. LDA LATTICES ACHIEVE POLTYREV CAPACITY

First, we precisely describe the family of LDA lattices we
consider. Then we will state and sketch the proof of our main
result, Theorem 3 below, which is the technical version of
Theorem 1 presented at the end of Section III-B.

A. Random LDA Lattice Ensemble

Let G be any (α,A)-good graph, in the sense specified in
the previous section. A priori, it may contain parallel edges.
Let us identify them and call again G the new graph, with at
most one edge between any two vertices. It is still an (α,A)-
good bipartite graph and represents also the Tanner graph of
an LDPC code. Let H be the binary parity-check matrix with
Tanner graph G. Let p be a prime number and let us associate
a label to every edge of G, independently of each other and

chosen uniformly at random in the set {0, 1, 2, . . . , p − 1}
of the representatives of classes modulo p. Equivalently, we
are choosing a parity-check matrix H of elements in Fp. Let
C = C[n, k]p ⊆ Fp be the k-dimensional linear code over the
finite field Fp with parity-check matrix H. The actual Tanner
graph of H is a subgraph of G which may differ from the
whole graph G if some random coordinates are chosen to be
equal zero. Notice also that, for the same reason, the rate k/n
of C may be greater than R. The binary matrix H may be
thought of the skeleton of the random matrix H.

Every i ∈ P represents a parity-check equation of C and a
row of H, while a j ∈ V is a coordinate of a codeword c ∈ C.
If ∆V is small with respect to n, the code is an LDPC code
and column (resp. row) weights are bounded from above by
∆V (resp. ∆P ).

Let Λ = C + pZn be the random LDA lattice obtained by
Construction A from C. We will investigate the behaviour of Λ
for the transmission of information over the AWGN channel.

B. The Main Theorem

Theorem 3. Let n be a positive integer number and let 0 <
R < 1. Let p = nλ be a prime number for some λ > 0 and
let α,A and 3 − R < ∆V ∈ N be three constants that obey
conditions (6) and (13). If

λ > max

{
1

2(α− 1 +R)
,

3

2(A− 1 +R)

}
, (15)

then there exists a Poltyrev-capacity-achieving family of LDA
lattices Λn = Cn + pZn such that the rate of Cn is at least
R and the row degree in the parity-check matrix of Cn is at
most ∆V /(1−R).

To obtain the family of LDA lattices we will deal with,
we first choose pairs (n, p = nλ). A typical value of λ
that we target is λ = 1/2. We then choose (α,A) satisfying
(15) and so as to minimize the lower bound (13) on ∆V in
Lemma 2. Lemma 2 then gives us the existence of an (α,A)-
good graph which is then used to define the LDA ensemble
of Section V-A. We show below that this particular ensemble
of lattices achieves Poltyrev capacity.

C. Proof of Theorem 3 (Sketch)

We say that a function f(n) is asymptotical to g(n) (denoted
f(n) ∼ g(n)), if limn→∞ f(n)/g(n) = 1. In the proof of
Theorem 3 we will deal with some spheres in Rn and we will
have to count the number of integer points that they contain.
We will use the following lemmas:

Lemma 4. Let Bn,c(ρ) := {x ∈ Rn | ||x − c||2 ≤ ρ2} be
the sphere centered at c of radius ρ = ρ(n). Let N := |Zn ∩
Bn,c(ρ)|. Then

N ≤ Vol (Bn,c (ρ))

(
1 +

√
n

2ρ

)n
. (16)

Lemma 5. Consider n i.i.d. random variables X1, . . . , Xn,
each of them following a Gaussian distribution of mean 0 and
variance σ2. Let ρ :=

√∑n
i=1X

2
i . Then, for every ξ > 0,

P {ρ ≤ σ
√
n (1 + ξ)} → 1, as n→∞.



These lemmas are classical and their proof is omitted.
In order to prove Theorem 3, we evaluate the probability of

decoding error, averaged over all LDA lattices built at random
following the model described in Section V-A. So, let G be
a bipartite graph chosen at random in F(n,R,∆V ,∆P ); we
know by Lemma 2 that, if n is big enough, G is an (α,A)-good
graph. Let Λ = C + pZn be a random LDA lattice associated
to G, and suppose we use Λ for communication.

First of all, because of the lattice symmetry, we can suppose
that the point of Λ sent over the channel is the point 0. The
AWG noise vector is η = (η1, . . . , ηn) and the channel output
is y = η. Let us suppose that the noise variance per dimension
is σ2 = σ2

max(1− δ)2 < σ2
max, for some 0 < δ < 1.

Let us consider the sphere B := Bn,y(σ
√
n(1 + ξ)) ⊆ Rn

centered at y, of radius σ
√
n(1 + ξ), with ξ > 0 chosen such

that
ξ <

δ

1− δ
; (17)

Lemma 5 states that, when n is very large, the point 0 is
inside the sphere with probability tending to 1.

We first argue that

Claim 6. With probability tending to 1, all non-zero vectors
of pZn in B will be further away from the received vector y
than the transmitted (zero) vector.

Proof: (Sketch) Recall that we have σ ≈ p1−R. There-
fore, with probability almost 1, all coordinates of y have
magnitude not exceeding pβ with 1 − R < β < 1. Every
coordinate of y is therefore closer to 0 than any non-zero
multiple of p.

We are therefore only concerned with ensuring that the
decoder does not return x̂ 6≡ 0 mod p. To this end let us
introduce the random variable N that counts the number of
lattice points inside the sphere and not belonging to pZn. Our
goal is to show that E[N ] → 0: this will prove the desired
result.

For every integer point x ∈ B ∩ Zn, let Xx be the random
variable defined by

Xx =

{
1, if x ∈ Λ

0, if x /∈ Λ
. (18)

We have
N =

∑
x∈(Zn∩B)rpZn

Xx (19)

and
E[N ] =

∑
x∈(Zn∩B)rpZn

P{x ∈ Λ} (20)

An integer point x belongs to Λ if and only if HxT ≡
0 mod p. Remember that H is a sparse matrix so, if some of
the coordinates of x are equal to 0 (in Fp), some parity-check
equations will be trivially satisfied, no matter what its random
coefficients are. More precisely: let Hi be the i-th row of the
binary skeleton matrix H of H (see Section V-A). We have
that if the supports of x and Hi have empty intersection then
P{HxT ≡ 0 mod p} = 1. On the other hand, if the supports

of x and Hi intersect in at least one coordinate, then we see
that P{HxT ≡ 0 mod p} = 1/p.

For a fixed x, let Tx := {i |Supp(Hi) ∩ Supp(x) 6=
∅}. Notice that Tx is the neighbourhood in G of Supp(x).
Now let t = |Tx| be the number of parity-check equa-
tions that are not trivially satisfied by x: then P{x ∈
Λ} = p−t, because the coefficients that define the parity-
check equations are chosen independently and therefore
the events {x satisfies the i-th parity-check} are independent.
This means that

E[N ] =
∑

x∈(Zn∩B)rpZn

1

pt
=

n(1−R)∑
t=1

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt
(21)

In order to clarify our strategy, suppose for a moment that
|Tx| = n(1 − R) for all x, which is false in general. The
summation would become∑

x∈(Zn∩B)rpZn

1

pn(1−R)
≤ |Z

n ∩ B|
pn(1−R)

≤ (22)

≤ Vol(B)

pn(1−R)

(
1 +

1

2(1 + ξ)σ

)n
(by Lemma 4) ∼ (23)

∼ 1√
πn

(
(1 + ξ)

√
2πeσ

p(1−R)

)n(
1 +

1

2(1 + ξ)σ

)n
, (24)

where the asymptotic expression is obtained by Stirling’s
approximation of the volume of the sphere. One can show that
the term in the right parentheses is at worst subexponential
(i. e. asymptotical to exp(Cnµ), for some constants C and
0 < µ < 1); hence the dominating term in (24) is the central
one. We would be done, since (24) goes to 0 when n grows,
because the base of the dominating exponential is smaller than
1 (recall that σmax = p(1−R)/

√
2π e for an LDA lattice):

(1 + ξ)

√
2πeσ

p(1−R)
< 1⇔ σ = σmax(1− δ) < σmax

1 + ξ
(25)

⇔ ξ <
δ

1− δ
, (26)

which is condition (17).
What happens in the more general case, when |Tx| <

n(1 − R)? A priori, the power of p in (24) is not sufficient
to guarantee the convergence to 0; this clearly happens, for
example, when |Tx| is a constant with respect to n. We need
a more detailed analysis, based on an efficient estimation of
|{x ∈ (Zn ∩ B) r pZn | |Tx| = t}|, which exploits the
properties of (α,A)-good graphs.

We begin by cutting the summation in (21) into three differ-
ent parts; given a small positive constant ε, such that condition
(10) holds for G, we will consider the three cases: t < Adεne,
Adεne ≤ t < n(1−R)/2 and n(1−R)/2 < t ≤ n(1−R).

One can see that, according to the choice of ε, t < Adεne
implies that |Supp(x)| ≤ dεne and, because of (10), t ≥
A|Supp(x)|. As a consequence, recalling that Bn,y(ρ) is the
n-dimensional sphere centered at y of radius ρ, ∀t < Adεne



we have:

|{x ∈ (Zn ∩ B) r pZn | |Tx| = t}| ≤ (27)
≤ |{x ∈ (Zn ∩ B) r pZn | |Supp(x)| ≤ t/A}| ≤ (28)

≤
(

n

bt/Ac

)
|Zbt/Ac ∩Bbt/Ac,y(σ

√
n(1 + ξ))| ≤ (29)

≤ nt/A|Zbt/Ac ∩ Cbt/Ac(2σ
√
n(1 + ξ))| ≤ (30)

≤ nt/A(2σ
√
n(1 + ξ) + 1)t/A, (31)

where Cbt/Ac(2σ
√
n(1+ξ)) is the bt/Ac-dimensional cube of

edge 2σ
√
n(1 + ξ). Then,

Adεne−1∑
t=1

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt
= (32)

=

Adεne−1∑
t=1

|{x ∈ (Zn ∩ B) r pZn | |Tx| = t}|
pt

≤ (33)

≤
Adεne−1∑
t=1

nt/A(2σ
√
n(1 + ξ) + 1)t/A

pt
< (34)

<

Adεne−1∑
t=1

(
D1/An(3/2A+λ(1−k/n)/A−λ)

)t
, (35)

where D is a constant term. The last inequality holds because
p = nλ and σ < σmax = nλ(1−k/n)/

√
2π e (see (4)); k is the

dimension of the code C over Fp and k/n ≥ R). Now, (35) is
a geometric series and its limit for n going to infinity is 0 if
the exponent of n is negative; it is, thanks to hypothesis (15).

Very similar arguments show that

lim
n→∞

n(1−R)/2−1∑
t=Adεne

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt
= (36)

= lim
n→∞

n(1−R)∑
t=n(1−R)/2

∑
x∈(Zn∩B)rpZn

|Tx|=t

1

pt
= 0. (37)

Condition (11) and (12) are necessary to obtain (36) and (37)
respectively, in the same way as (10) leads to (35).

Putting together what we have just shown and recalling (21),
we get that limn→∞ E[N ] = 0. This is enough to conclude
that limn→∞ P{x ∈ pZn | x ∈ B ∩ Λ} = 1, which implies
(by Claim 6) that limn→∞ P{x̂ = 0} = 1.

This is the end of the proof of Theorem 3.

VI. CONCLUSION

Encouraged by the experimental results of [4], we have
analysed the behaviour of LDA lattices for the transmission of
information over the AWGN channel. More precisely, we have
shown that there exists a Poltyrev-capacity-achieving family
of LDA lattices associated to very sparse p-ary parity-check
matrices. Specifically, the number of non-zero entries per
matrix-row or per column is a (typically small) constant. This
is in constrast to what is known about the binary LDPC case,

for which families of codes with bounded-weight parity-check
equations cannot achieve capacity. Ideally, we would like the
constants under which we can guarantee optimal performance
to be even smaller, and coincide with the constant ∆V = 2
used in [4] and that has experimentally also emerged as a
good choice for non-binary LDPC codes used on binary-input
channels ( [17] and references therein). We do not believe the
constants obtained here to be the best possible however, though
it is presently unclear to us whether ∆V can be reduced all
the way to ∆V = 2.

Finally, we note that the smallest values of p predicted to
achieve capacity are in surprisingly close accordance with the
optimal values of p obtained experimentally with decoders
based on iterative decoding techniques [4]. This is arguably
the most satisfying conclusion of the present contribution.
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