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Abstract—A new family of integer lattices built from Construc-  such those proposed in [5] [6] and [7] are made of nested
tion A and non-binary low-density parity-check (LDPC) codes  pinary codes, LDPC and Turbo codes respectively. Theysuffe
has been proposed by the authors in 2012. Lattices in this faily  ,om “the small number of nested codes due to the limited

are referred to as LDA lattices. Previous experimental reslis lexity. Al Ivsis of Constructi D latti ist
revealed excellent performance which clearly single out LB compiexity. Also, analysis of Lonstruction atuces 1stno

lattices among the strongest candidates for potential apjdations ~Very tractable where the Turbo or the LDPC ensemble should
in digital communications and networks, such as network cothg be taken into account. The recent family of low-densityidatt
and information theoretic security at the physical layer level.  codes [8] breaks from previous constructions by not relging

In this paper, we show that replacing random codes by LDPC hqerlying error-correcting codes, its lattice generatatrix

codes in Construction A does not induce any structural losViore . btained by directly i " trix: thi
precisely, our main theorem states that LDA lattices can acieve IS obtained Dy directly inverling a sparse matrix. this new

Poltyrev capacity limit on an additive white Gaussian noise a@pproach has structural appeal but decoding is somewhat
channel. We present here the detailed proof and its conseqnees unwieldy.

on the lattice dimension, the finite field size, and the paranters Construction A with linear random non-binary codes has
of the LDPC ensemble. The latter has a row weight that increass been studied by Loeliger [9]. For a lattice dimensien

logarithmically in the code length. In a more recent work, it is d lbhabet si d it h
proved that the Poltyrev limit is attained by a different LDA ~ @Nd an aiphabet sizg, n — oo andp — oo, It has

ensemble having a small constant row weight. been shown that random codes based on Construction A can
achieve the maximum noise levef,,., see Section Il and
. INTRODUCTION [12]. Attaining the Poltyrev limito2, ., would automatically

More than a century ago, significant works by mathemaimply that a rate up to% log(SNR) can be reached by a
cians have been accomplished on quadratic forms and kttidinite constellation under lattice decoding. The additidran
In the recent era, besides the extensive research on adivarM® SE factor and the proof of covering goodness extends this
topics related to quadratic forms, Leech and Sloane [1] madssult to the capacit% log(1 + SNR) as proved by Erez and
an elegant relationship between Euclidean lattices [2] adamir [10]. Unfortunately, the presence of random coding
error-correcting codes [3], see also chap. 5 in [2]. Mainlyithin Construction A is a main drawback making such a
linear error-correcting codes defined on a finite figldcan lattice ensemble too far from any practicality.
be used to construct lattices over the ring of relative iatsd, Gaborit and Zémor proposed a lattice family of high funda-
the ring of Gaussian integefi], and the ring of Eisenstein mental gain (i.e. Hermite constant) obtained by Constoncti
integersZ[w]. These three rings are the best candidates faith random non-binary codes [11]. They used codes defined
digital transmission at the physical layer in data networksy double circulant generator matrices. Similar to the ase
where communication links are real or complex. fully random p-ary codes, we do not know how to decode

Among these algebraic constructions of lattices from errahese lattices in moderate and large dimensions (beyond 100
correcting codes, we cite the so-called Constructions Arigl, A new approach was proposed by the present authors in
D [2, chap.5] [4]. Construction A produces a lattice out of fl3][14] relying on Construction A together wittrary LDPC
unique code. Construction B has two nested codes, the largedes [15] [16]. Experiments with reasonable valueg, such
being a single parity-check code. Construction D is based aap = 11 andp = 41, showed excellent results with those
multiple nested lattices. Many of the famous lattice sphelattices, referred to as LDA lattices. The decoder is iteeat
packings in small dimensions (less than 32) are found byethd47] with an acceptable complexity being able to decode in
algebraic constructions. Obviously, linear binary codieygd dimensions up to 10000. Error rate performance for large
a great role in those constructions. Famous lattices like tHimensions are very good and estimated Hermite constants at
Gosset latticelg, the Leech lattice\o,, and the Barnes-Wall small dimensions via LLL [18] show that most LDA lattices
family BW,, are built via binary codes. A few constructionsave a high packing density.
with non-binary codes can be found in [2] (including complex In this paper, we show that replacing random codes by
constructions forE’s and A4). Furthermore, powerful lattices LDPC codes in Construction A does not induce any structural



loss. More precisely, our main theorem states that LDAdesti region and the boundaries of the code; equivalently, wedcoul
can achieve Poltyrev capacity limit on an additive whiteay that the whole unbounded lattice makes up the codebook.
Gaussian noise channel, under lattice decoding. The diewpli In this setting, the decoder only looks for the lattice point
statement is given in Theorem 1 in Section Il and the fulhich is the closest to the channel outputGiven a lattice
statement is found in Theorem 4 in Section IV-C. code, this method is equivalent to maximum likelihood (ML)
decoding for all the points that are far from the boundarfes o
the shaping region, while it is reduced to a suboptimal smut
Let C[n, k], be a linear block code of length and for all the points close to them. For an infinite lattice, itt
dimensionk over[F,. When needed we writ€[n, k,du], for  decoding is optimal. Lattice decoder is simplygaantizer
a code with minimum Hamming distandg;. From multilevel which findsz e A such thaty = & + v, for somev € V, the
coded modulation point of view [19], Construction A has tw®/oronoi region of the origin. Of coursg,is correctly decoded
levels only, the first is protected b¥/[n, k], and the second if and only if # = x. We define theerror probability P. as
is uncoded. A latticeA is a discrete sub-group of rank of
R™. Construction A defined via the expression Pe=P{& # x}. ®3)

A = Cln, k], + pZ™. (1) By the symmetry of.thg Iatticg, this probability is the same _f
everyz in A and coincides with the average error probability.
In the above expression, we abuse notation by identiffing  In [12], Poltyrev adapted the concept of capacity to this
with one of its natural embeddings ih For example, we have scenario. When the codebook is unbounded, usual capacity
Eg = [8,4,4] + 278, where[n, k,dy] is used as shorthand|oses its sense. Poltyrev proposed the notiorgereralized
for a code with parameters, k, dy. The Eg lattice can capacity which concretely implies that there exists a lattice
also be obtained by an equivalent complex Construction B, big enough dimension that can be decoded with arbitrary

II. LATTICES AND CONSTRUCTIONA

Eg = [4,1,4]s+ (141)[4,3,2]2 4+ (1 +4)* Z[i]*, and by small decoding probability’. if and only if the noise variance
another complex Construction &s = [4,2,3]3+iv3 Z[w]*.  of the channel is

Es is an extremal case for its Euclidean distance. Indeed, the 2

squared Euclidean distance [ 4,4], is 4, it is equal to the o2 < Vol(a)~ -2 (4)
squared Euclidean distance in the cog&t. Improving C 2me e

won't improve the Euclidean distance @k becausep = 2. We refer the reader to [12] for all the details. Notice that,d
This simple example shows us that avoiding Construction IBttice obtained by Construction A fromiadimensional code
with multiple nested binary codes is possible by using a moieF?, Vol(A) = p»=*) ando?,,, = p>=#/") j2re.
powerful codeC' and a larger finite field size. Hence, LDA ~ With a little abuse of language, we catbltyrev capacity
lattices [13] refer to the Construction A case whéres an the upper bound for acceptable noise variance in (24). We wil
LDPC code ang > 2. henceforth say that a lattice famifchievesPoltyrev capacity

In the sequel, we restrict the study to LDA lattices built a§ a random lattice in the family can be decoded with error
Z-modules. Its generalization to lattices ov&fi] and Z[w] probability as small as wanted in big enough dimension.

should be straightforward. This paper is dedicated to the proof of the following result:
Theorem 1There exists a Poltyrev-capacity-achieving fam-
lIl. LDA L ATTICES AND LATTICE DECODING ily of LDA lattices A = C[n, k] + pZ™, such that the rows of

First of all, let us recall what the AWGN channel is andhe parity-check matrices of the underlying LDPC codes have
how a lattice is used for the transmission of informatiordegree logarithmic im.
Let A C R"” be an LDA lattice with generator matri%. This theorem will be a straightforward consequence of Theo-
In this scenario, uncoded information is represented by am 4 in Section IV-C, which expresses the same result with
integer vectorz € Z", which is coded into the lattice pointsome more technical details due to specific constructioheof t
x = zG € A. This point is sent over the AWGN channelLDA lattices family.
which adds toxz some random noise. The channel output
is then the realn-dimensional pointy = = + 7n, where
n=(m,...,n,) and then;’s aren i.i.d. normally distributed A. Random LDA lattices ensemble
random variables of varianee’: First of all, let us specify the random LDA lattices ensemble
i ~ N(0,02). @) we c_zleal with. Letp be a prime number and Iﬁ be a r_natr_ix
! ’ of sizen x n(1 — R), for some0 < R < 1 with entries in
By definition, alattice codeis the intersection of a lattice {0,1,...,p — 1}. More precisely, let each row of the matrix
with a boundedshaping regionand properly only this finite be a random vector, built independently from each other as
subset of the lattice consists of the codewords used for asmnfollows. Let0 < A < n be an integer. For a given row &f,
nication (see for example [8]). As it is done by other authofst us choose, following a uniform random distribution, etka
(for example [8], [6], [5] and [7]), in this paper we treat theA coordinates. We assign to these coordinates a value, chosen
case oflattice decodingr decoding of thénfinite lattice This uniformly at random in{0, 1,...,p—1}; furthermore, we im-
means that the decoder makes no assumption on the shapioge that all the othet — A coordinates are deterministically

IV. LDA LATTICES ACHIEVE POLTYREV CAPACITY



equal to0. What we obtain is a matrix in which every rowGiven a random variabl®@ and anyr > 0, Chebyshev’s
contains exactly: — A zeros andA random entries, placed ininequality states that

random positions.

This matrix can be viewed as the parity-check matrix &f a

dimensional random cod€ = C[n, k], C F,", for which all

Var(Y)

PAY —E[Y]|> 7} < —— (15)

parity-check equations have at mastnon-zero coefficients. Then, choose any > 0 and fixY = p* and 1 = xv/2no?;

This implies that the rate of’ it at leastR, but it may also
be bigger. Naotice that, i\ is small with respect ta, C is

we have

P {|p2 —no?| > /-@\/27102} < % (16)
K

an LDPC code. We will take into account the set of all LDA .
latticesA = C + pZ" C Z" such thatC' is built at random as !f We choosex = x(n) such thatlim,, ... & = +oc, than

we have just described.

B. Preliminary lemmas

Before stating our main theorem, we prove here two clas-

sical lemmas that will be useful in the following.

Lemma 2:Let B, .(p) := {z € R" | ||z — ¢||* < p?
be the sphere centered atof radiusp = p(n). Let N :=
|Z™ N By, c(p)|- Then

N < Vol (By.. (p)) (1 + g) . 5)

Proof: Consider, for every € Z", the cubeC, centered
at z and of edge (and volume) equal toLet

U

ZEZ"NBy,c(p)

U= C. (6)

and letS be the sphere circumscribed &b (which contains
B,,.c(p), t00). Since the diagonal of ar§, measures/n, we

have
Vol(8) < Vol <BM <p n ?)) : @)
Hence
N =|{z]C. CU}| =VolUd) <VoI(S) < (8)
< Vol (Bn,c (p - @)) = ©)
— Vol (Bp..(1)) <p n g) - (10)
= Vol (B,,.(1)) p" (1 + g) = (11)
P
Vol (B, (o) (1447 ) 12)
2p
which is what we were looking for.
Lemma 3:Considern i.i.d. random variables{y, ..., X,

each of them following a Gaussian distribution of méaand
varianceo?. Let p := /> " | XZ. Then, for every > 0,

P{pgo\/ﬁ(1+6)}—>1,a5n—>oo. (13)

Proof: It is known that, sinceX; ~ N(0,02), i =
1,...,n, thenX? has a gamma distribution afit{ X?] = o2,

P{|p2—n02| Sm/?naz} — 1, asn — oc. (17)
Equivalently,
2 2 2
P{p §0n<1+li\/j>}—>1,a5n—>oo. (18)
n
Taking for example x = logn, we have that

lim, ., ky/2/n — 0 and for everye > 0, we can
conclude that

P{pga\/ﬁ(l—i—e)} — 1, asn — oo, (19)

which proves the lemma.

C. The main result

We are now ready to state our main theorem.

Theorem 4:Let n be a positive integer and lét be a real
number such thal < R < 1. Let p = n* be a prime number
for some\ > 0. Let A = Flogn be an integer number, for
someg € R. If

1 n
A > o7 and Tog 7t
then there exists a family of-dimensional LDA lattices\ =
C+ pZ™ that achieves Poltyrev capacity and such that the row
degree in the parity-check matrix 6f is at mostA, the rate
of C'is at leastR.

Proof: The family of LDA lattices that we consider is
the random ensemble described in Section IV-A. Aebe a
lattice of this family. Because of the lattice symmetry, vea c
suppose that the point df transmitted over the channel is the
point0. n = (n1,...,n,) is the AWG noise vector and the
channel output iy = . We suppose that the channel noise
variance iso? = o2, (1 — §)? for some0 < § < 1 that can
be as small as wanted.

Lemma 3 states that, whem is very large, the vectoy
tends to lie within a sphere of radius a bit greater tharn
and centered &l.

Let us consider the sphet:= B,, ,(c\/n(1+¢)) centered
at y, with £ > 0 chosen such that

>0B8>A+ (20)

3
2(1 - R)’

— 21
e< 15 (21)

this last condition will be useful in the following.

Var(X?) = 20*. Consequently, by the independence of the when n grows, the point0 is inside the sphere with

X,

E[p?] = no?, Var(p®) = 2no?. (14)

probability tending tol; the probability of errorP, is smaller
than the probability that one or more lattice points differe



from 0 lie inside the sphere: if0 is the only point in whereh represents any randomly built row &f (all rows of
B := B, ,(0v/n(1+4¢)), then lattice decoding gives the correcf are i.i.d.). Then,
answer; otherwise, an error will very likely come out.

For every integer point € BN Z", let X, be the random . n(1—R)
variable de)liinedgby P EWVl= > (P{ha” =0modp}) - (3D
TEZMNB\pZ™
)L ifzeA 29
v 0, ifxg A (22) Given an integer pointr € Z" ~ pZ", suppose that
| Supp(z)| = s > 0, for some integed < s < n. We define
SincepZ™ is contained in any LDA latticeX, = 1 for any support of the random vectoh. = (hy, ..., h,) the set of

z € pZ", independently fromA. That is, in order to imply indices of theA coordinates of. that are not deterministically
that 0 is the only point ofpZ™ which lies in B (with very equal to0. If I = {i € Supp(z) N Supp(h)}, we have

high probability whem: is big enough), we impose the prime
p to be bigger than the diameter of the sphere. In this way,

the values that a coordinate of an integer point ingsdmay P{ha’ = 0mod p} = (32)
take, are contained in a set of representatives of the dlasse P{hz’ =0mod p | |I| = 0}P{|I| = 0} + (33)
modulop and, in particular, each class is represented at most + P{4z7 = 0 mod p | || # 0}P{|I| # 0} = (34)
once. This implies thalpZ™ N B| < 1 and, if 0 is inside B, 1
there will not be in it any other points QfZ". =1-P{{I|=0}+ p P #0} < (35)
Formally, the condition om is the following: 1
<P{|I|=0}+-. (36)
p > 20vn(l+¢). (23) P

We want it to be satisfied for evesy < o..x, therefore, taking

. There are two different situations:
into account the upper bound

o If 1 <s<n—A,

p(liR)
o< (24)
2me (nfs)
—_ov—\a) _
and the fact thap = n?, it becomes: P{lT| =0}t = (%) o (37)
—A n—1—-A n—s+1—A
2 _pyal _n . = 38
”A>\/g(1+€)nm Bts, n n—1 n—s+1 (38)
A A A
This justifies the condition\ > 1/2R in the hypothesis of i Gl I e TnTst1) S
the theorem, which makes (at least asymptotically) true the (39)
previous inequality. AN ¢ Blogn\*
Now, let A/ be the random variable that counts the number < <1 — —> = (1 — & > < (40)
of lattice points insideB that do not belong teZ™. We will " "
show that %/. (41)
lim P{N =0} = 1. (25) e
By definition, The previous inequality comes from the fact that
N= > X (26) Blogn\® 1
T EZNNB~pZ™ (1 - ng > < BsIn e (42)
We prove the theorem if we prove (25). It is sufficient to Blogn 1 Blogn
show that < log <1 I ) Slog 7o =-——>—, (43
Notice that
which is true because
EN] = > EXJ= ) = P{zecA} (28)
vERINB P vERINB P log(1 — ) < —z for all & < 1. (45)
If H is the parity-check matrix of”,
Pz e A} = P{Hz" = 0 mod p} (29) Notice that forn big enoughlog(1 — Slogn/n) is well-
. n(1—R) defined and) < Blogn/n < 1.
= (P{ha" =0 mod p}) o (30) o Ifinsteadn — A < s <n, P{|I| =0} =0.



Therefore, ifn is big enough, putting together (31), (36)e a constant such thah/5 < 1. We will consider separately:

and what we have just shown, recalling that n*, we get

EN = Y (P{ha” = 0mod p})"" " (46)
T EZNB\pZL"
n—A 1 1 n(1—R)
< - 4 =
s=1 z€Z"NB~pZ"™
| Supp(z)|=s
n 1 n(1—R)
+ > (F) : (48)

s=n—A+1xcZ"NB~pZ™
| Supp(z)|=s

First of all, let us show that (48) goes t® when n

grows. We will use the following definition: we say that a

function f(n) is asymptotic tog(n) (denotedf(n) ~ g(n)),

if lim,,—,o f(n)/g(n) = 1. Let T'(-) be the Euler Gamma

function, then:

n 1 n(1—R)
> Y (n) < (49)
s=n—A+1zeZ"NB\pZ"
| Supp(z)|=s
1 n(l—R)
< > (ﬁ) = (50)
z€Z™NB
1 n(l—R)
= |Z" N B (—A) < (51)
n
1 n 1 n(l—R)
< P - =
< Vol(B) <1+2(1+6)0) <n)‘) (52)

(Vmoyn(l +¢))”
r(2+1)

- 1 n 1 n(1—R)
2(1+¢€)o nA

(53)
(ov2re(1 + &))" 1 mo\MR
L (i) () =
(54)
(-0 +e)" <1+ 2o !
NG 21+ €)(1 — 6)n 1)
(55)

1) 1<s< /g
2) \n/f < s <aAn/p;
3) an/f<s<n-—A.

Note thataAn /g is really less tham — A if n is big enough.
First case :1 < s < An/f (that is, \ > Bs/n). First of
all, recall thatB,, .(p) is the n-dimensional sphere of radius

p, centered at. Notice that

{z e Z" N B~ pZ" | |Supp(z)| = s}| < (58)
<z eZ"NB | |Supp(z)| = s}| < (59)
< (”) |Z" (1 By y(ov/n(1 +¢))| < (60)
S
<n*lZ"N[—oyn(l+¢),...,00/n(l +e)°| < (61)
<n*(20yn(l +¢) +1)°. (62)
This will be useful in the following:
An n(l—
Yy (L) s e
nBs/n nA —
s=1 xeZ"NB~pZ"
| Supp(z)|=s
[An/B] 9 n(1—R)
< Z; n*(20v/n(1+¢) + 1) <W> < (64)
[An/3] s
< Z (Cln,\(l—R)+3/2—ﬁ(1—R)) : (65)
s=1

where(; is a constant. The last inequality is obtained recalling
thato = ouax (1 — ) = n*(=R)(1 —§)//2me. We conclude

by pointing out that the previous sum is a geometric series

and it tends td) because the exponentofis negative, thanks
to condition (20).

Second case An/f < s < aAn/F (andBs/n < aX). First
of all, notice that, if we bound”) with 2" instead ofn* in
(61), we have

Notice that in (52) we have used Lemma 2, (54) follows bwhereC; is a constant. This implies that

Stirling approximation and (55) from the fact that= (1 —

d)omax- Now, one can show that the term in the big parenthesis
is either asymptotic to a constant or, at worst, subexpaaent

(i. e. asymptotic texp(Cn*), for some constants' and0 <
w1 < 1); hence the dominating term in (55) (6l —6)(1+4¢))™.
But (1 —§)(1 +¢) < 1, thanks to condition (21):

1 0
1-6 = 1-4§
This implies that (55) tends to asn tends to infinity and the
same holds for (48).

1-0)(1+e)<lee< —1

(56)

At this point, we only have to study the behavior of (47). In
order to do it, we will separate the analysis in three sulxase

let

l<a<1+ (57)

2
312\1-R)

{z € Z"N B~ pZ" | |Supp(z)| = s} < (66)

<2"(20vn(l+e)+1)° < (67)

< 271(Cvznl/Z-l-)\(l—R))7 (68)

laAn/B] 1 1\ "(-R) ~ (e

Z Z nBs/n + E = ( )
s=[An/B]+1z€Z"NB~pZ"
| Supp(z)|=s

laAn/B] 1 n(1—R)
s=[An/B]+1z€Z"NB~pZ"
| Supp(z)|=s
s ’ﬂ(l—R)
: (1 + n%*A) (71)
n(1—R)
< on (1 + n’\(“_l)) : (72)
LaAn/B] R
YA n1/2+/\(1—R)—B(1—R)) 7 (73)
s=|An/B]+1



for some constant’s. with ¢ > 1 by hypothesis. Then, also (83) is bounded by a
Lety:=1/2+ A(1 — R) — (1 — R). The summation is a quantity in which the dominating term i§1 + £)(1 — 9))",
(partial) geometric series and it is equal to: which goes td) asn tends to infinity.
1 — pr(larn/Bl+1) 1 _ pr([An/B]+1) This ends the proof of (27), which is enough to conclude

[ T = (74) that the theorem is true.
y(An/B]+1) _ pv(ladn/B]+1)
n n -~ (75)
1 —n? V. CONCLUSIONS AND FUTURE WORK
~ nV(\)\”/BJ‘H)7 (76)

LDA lattices are obtained from Construction A with a non-
since~ is negative by hypothesis (20) aad> 1. binary LDPC code. We proved in this paper that the LDA
This implies that (69) is bounded by a function which igattice ensemble attain Poltyrev limit. This completesvmaes
asymptotic to experimental results based on iterative factor graph dagod

(205" nMa=DA=RIF(V/81+1/m) < (77) of LDA lattices. In a more recent work, it is proved that

(78)

which goes td) if (A(a —1)(1— R)+~A/f) is negative. Let
us check that this is true:

Ma—1)(1 = R)+~\/B =
1 A
_/\(a—l)(l—R)Jr<§+/\(1—R)—5(1—R))B<O<:>

n(2Cy ) Ma-D(1-R)+9)/8)

(79)
[1]
[2]

(80)
A 1 (3]
R S OB G R (81) a
This is true thanks to hypothesis (20) and the condition
1+2/(3+ 2A(1 — R)), which imply (5]
3 A 1
AR - Te—ae-n) &2 ©

(7]
(8]
El

n—A 1 1 n(l—R)
> > (—ngs/ﬁm) < (83) [0

s=lain/B]+1 x€Z"NB~pL"™
| Supp(z)|=s

All of this allows us to conclude that (78) and (69) tendOto
whenn grows.
Third case :aAn/f < s <n — A. We have

1\ "R 1 \"-R) (11]

: me;mlﬁ <F> <1 ’ nﬁS/n_A) - [12]
L\ "(1-R) L \"(-R)

(s () ) ()

(85) 4

We know that the left term is (asymptotically) bounded by)(5§15]
and goes td exponentially; we show now that the right term

is at most subexponential in. Recalling thats > aAn/g3, it  [16]

is bounded as follows: [17]
1 n(l—R)

(1 + TS/R_A) < (86) [18]

[19]

n(l—R)
1+ L ~ exp (nlfA(afl)(l - R)) (87)
nAla—1) )

Poltyrev limit is attained by a different LDA ensemble hayin
a small constant row weight. Our next step is to prove that
both LDA lattice ensembles can achiex%'éog(l + SNR) for
finite constellations.
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