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Abstract—A new family of integer lattices built from Construc-
tion A and non-binary low-density parity-check (LDPC) codes
has been proposed by the authors in 2012. Lattices in this family
are referred to as LDA lattices. Previous experimental results
revealed excellent performance which clearly single out LDA
lattices among the strongest candidates for potential applications
in digital communications and networks, such as network coding
and information theoretic security at the physical layer level.
In this paper, we show that replacing random codes by LDPC
codes in Construction A does not induce any structural loss.More
precisely, our main theorem states that LDA lattices can achieve
Poltyrev capacity limit on an additive white Gaussian noise
channel. We present here the detailed proof and its consequences
on the lattice dimension, the finite field size, and the parameters
of the LDPC ensemble. The latter has a row weight that increases
logarithmically in the code length. In a more recent work, it is
proved that the Poltyrev limit is attained by a different LDA
ensemble having a small constant row weight.

I. I NTRODUCTION

More than a century ago, significant works by mathemati-
cians have been accomplished on quadratic forms and lattices.
In the recent era, besides the extensive research on advanced
topics related to quadratic forms, Leech and Sloane [1] made
an elegant relationship between Euclidean lattices [2] and
error-correcting codes [3], see also chap. 5 in [2]. Mainly,
linear error-correcting codes defined on a finite fieldFp can
be used to construct lattices over the ring of relative integersZ,
the ring of Gaussian integersZ[i], and the ring of Eisenstein
integersZ[ω]. These three rings are the best candidates for
digital transmission at the physical layer in data networks
where communication links are real or complex.

Among these algebraic constructions of lattices from error-
correcting codes, we cite the so-called Constructions A,B,and
D [2, chap.5] [4]. Construction A produces a lattice out of a
unique code. Construction B has two nested codes, the larger
being a single parity-check code. Construction D is based on
multiple nested lattices. Many of the famous lattice sphere
packings in small dimensions (less than 32) are found by these
algebraic constructions. Obviously, linear binary codes played
a great role in those constructions. Famous lattices like the
Gosset latticeE8, the Leech latticeΛ24, and the Barnes-Wall
family BWn are built via binary codes. A few constructions
with non-binary codes can be found in [2] (including complex
constructions forE8 andΛ24). Furthermore, powerful lattices

such those proposed in [5] [6] and [7] are made of nested
binary codes, LDPC and Turbo codes respectively. They suffer
from the small number of nested codes due to the limited
complexity. Also, analysis of Construction D lattices is not
very tractable where the Turbo or the LDPC ensemble should
be taken into account. The recent family of low-density lattice
codes [8] breaks from previous constructions by not relyingon
underlying error-correcting codes, its lattice generatormatrix
is obtained by directly inverting a sparse matrix: this new
approach has structural appeal but decoding is somewhat
unwieldy.

Construction A with linear random non-binary codes has
been studied by Loeliger [9]. For a lattice dimensionn
and an alphabet sizep, n → ∞ and p → ∞, it has
been shown that random codes based on Construction A can
achieve the maximum noise levelσ2

max, see Section III and
[12]. Attaining the Poltyrev limitσ2

max would automatically
imply that a rate up to1

2 log(SNR) can be reached by a
finite constellation under lattice decoding. The addition of an
MMSE factor and the proof of covering goodness extends this
result to the capacity12 log(1 + SNR) as proved by Erez and
Zamir [10]. Unfortunately, the presence of random coding
within Construction A is a main drawback making such a
lattice ensemble too far from any practicality.

Gaborit and Zémor proposed a lattice family of high funda-
mental gain (i.e. Hermite constant) obtained by Construction A
with random non-binary codes [11]. They used codes defined
by double circulant generator matrices. Similar to the caseof
fully random p-ary codes, we do not know how to decode
these lattices in moderate and large dimensions (beyond 100).

A new approach was proposed by the present authors in
[13] [14] relying on Construction A together withp-ary LDPC
codes [15] [16]. Experiments with reasonable values ofp, such
as p = 11 and p = 41, showed excellent results with those
lattices, referred to as LDA lattices. The decoder is iterative
[17] with an acceptable complexity being able to decode in
dimensions up to 10000. Error rate performance for large
dimensions are very good and estimated Hermite constants at
small dimensions via LLL [18] show that most LDA lattices
have a high packing density.

In this paper, we show that replacing random codes by
LDPC codes in Construction A does not induce any structural



loss. More precisely, our main theorem states that LDA lattices
can achieve Poltyrev capacity limit on an additive white
Gaussian noise channel, under lattice decoding. The simplified
statement is given in Theorem 1 in Section III and the full
statement is found in Theorem 4 in Section IV-C.

II. L ATTICES AND CONSTRUCTIONA

Let C[n, k]p be a linear block code of lengthn and
dimensionk overFp. When needed we writeC[n, k, dH ]p for
a code with minimum Hamming distancedH . From multilevel
coded modulation point of view [19], Construction A has two
levels only, the first is protected byC[n, k]p and the second
is uncoded. A latticeΛ is a discrete sub-group of rankn of
R

n. Construction A definesΛ via the expression

Λ = C[n, k]p + pZ
n. (1)

In the above expression, we abuse notation by identifyingFp

with one of its natural embeddings inZ. For example, we have
E8 = [8, 4, 4]2 + 2Z

8, where[n, k, dH ] is used as shorthand
for a code with parametersn, k, dH . The E8 lattice can
also be obtained by an equivalent complex Construction B,
E8 = [4, 1, 4]2 + (1 + i)[4, 3, 2]2 + (1 + i)2 Z[i]4, and by
another complex Construction A,E8 = [4, 2, 3]3+ i

√
3 Z[ω]4.

E8 is an extremal case for its Euclidean distance. Indeed, the
squared Euclidean distance in[8, 4, 4]2 is 4, it is equal to the
squared Euclidean distance in the coset2Z

8. Improving C
won’t improve the Euclidean distance ofE8 becausep = 2.
This simple example shows us that avoiding Construction D
with multiple nested binary codes is possible by using a more
powerful codeC and a larger finite field sizep. Hence, LDA
lattices [13] refer to the Construction A case whereC is an
LDPC code andp > 2.

In the sequel, we restrict the study to LDA lattices built as
Z-modules. Its generalization to lattices overZ[i] and Z[ω]
should be straightforward.

III. LDA L ATTICES AND LATTICE DECODING

First of all, let us recall what the AWGN channel is and
how a lattice is used for the transmission of information.
Let Λ ⊆ R

n be an LDA lattice with generator matrixG.
In this scenario, uncoded information is represented by an
integer vectorz ∈ Z

n, which is coded into the lattice point
x = zG ∈ Λ. This point is sent over the AWGN channel,
which adds tox some random noise. The channel output
is then the realn-dimensional pointy = x + η, where
η = (η1, . . . , ηn) and theηi’s aren i.i.d. normally distributed
random variables of varianceσ2:

ηi ∼ N (0, σ2). (2)

By definition, alattice codeis the intersection of a lattice
with a boundedshaping regionand properly only this finite
subset of the lattice consists of the codewords used for commu-
nication (see for example [8]). As it is done by other authors
(for example [8], [6], [5] and [7]), in this paper we treat the
case oflattice decodingor decoding of theinfinite lattice. This
means that the decoder makes no assumption on the shaping

region and the boundaries of the code; equivalently, we could
say that the whole unbounded lattice makes up the codebook.
In this setting, the decoder only looks for the lattice point
which is the closest to the channel outputy. Given a lattice
code, this method is equivalent to maximum likelihood (ML)
decoding for all the points that are far from the boundaries of
the shaping region, while it is reduced to a suboptimal solution
for all the points close to them. For an infinite lattice, lattice
decoding is optimal. Lattice decoder is simply aquantizer,
which findsx̂ ∈ Λ such thaty = x̂ + v, for somev ∈ V , the
Voronoi region of the origin. Of course,y is correctly decoded
if and only if x̂ = x. We define theerror probability Pe as

Pe = P{x̂ 6= x}. (3)

By the symmetry of the lattice, this probability is the same for
everyx in Λ and coincides with the average error probability.

In [12], Poltyrev adapted the concept of capacity to this
scenario. When the codebook is unbounded, usual capacity
loses its sense. Poltyrev proposed the notion ofgeneralized
capacity, which concretely implies that there exists a lattice
in big enough dimensionn that can be decoded with arbitrary
small decoding probabilityPe if and only if the noise variance
of the channel is

σ2 <
Vol(Λ)

2

n

2π e
=: σ2

max. (4)

We refer the reader to [12] for all the details. Notice that, for a
lattice obtained by Construction A from ak-dimensional code
in F

n
p , Vol(Λ) = p(n−k) andσ2

max = p2(1−k/n)/2π e.
With a little abuse of language, we callPoltyrev capacity

the upper bound for acceptable noise variance in (24). We will
henceforth say that a lattice familyachievesPoltyrev capacity
if a random lattice in the family can be decoded with error
probability as small as wanted in big enough dimension.

This paper is dedicated to the proof of the following result:
Theorem 1:There exists a Poltyrev-capacity-achieving fam-

ily of LDA lattices Λ = C[n, k] + pZ
n, such that the rows of

the parity-check matrices of the underlying LDPC codes have
degree logarithmic inn.
This theorem will be a straightforward consequence of Theo-
rem 4 in Section IV-C, which expresses the same result with
some more technical details due to specific construction of the
LDA lattices family.

IV. LDA LATTICES ACHIEVE POLTYREV CAPACITY

A. Random LDA lattices ensemble

First of all, let us specify the random LDA lattices ensemble
we deal with. Letp be a prime number and letH be a matrix
of size n × n(1 − R), for some0 < R < 1 with entries in
{0, 1, . . . , p − 1}. More precisely, let each row of the matrix
be a random vector, built independently from each other as
follows. Let 0 ≤ ∆ ≤ n be an integer. For a given row ofH ,
let us choose, following a uniform random distribution, exactly
∆ coordinates. We assign to these coordinates a value, chosen
uniformly at random in{0, 1, . . . , p−1}; furthermore, we im-
pose that all the othern−∆ coordinates are deterministically



equal to0. What we obtain is a matrix in which every row
contains exactlyn−∆ zeros and∆ random entries, placed in
random positions.

This matrix can be viewed as the parity-check matrix of ak-
dimensional random codeC = C[n, k]p ⊆ Fp

n, for which all
parity-check equations have at most∆ non-zero coefficients.
This implies that the rate ofC it at leastR, but it may also
be bigger. Notice that, if∆ is small with respect ton, C is
an LDPC code. We will take into account the set of all LDA
latticesΛ = C + pZ

n ⊆ Z
n such thatC is built at random as

we have just described.

B. Preliminary lemmas

Before stating our main theorem, we prove here two clas-
sical lemmas that will be useful in the following.

Lemma 2:Let Bn,c(ρ) := {x ∈ R
n | ||x − c||2 ≤ ρ2}

be the sphere centered atc of radiusρ = ρ(n). Let N :=
|Zn ∩ Bn,c(ρ)|. Then

N ≤ Vol (Bn,c (ρ))

(

1 +

√
n

2ρ

)n

. (5)

Proof: Consider, for everyz ∈ Z
n, the cubeCz centered

at z and of edge (and volume) equal to1. Let

U :=
⋃

z∈Zn∩Bn,c(ρ)

Cz (6)

and letS be the sphere circumscribed toU (which contains
Bn,c(ρ), too). Since the diagonal of anyCz measures

√
n, we

have

Vol(S) ≤ Vol

(

Bn,c

(

ρ +

√
n

2

))

. (7)

Hence

N = |{z | Cz ⊆ U}| = Vol(U) ≤ Vol(S) ≤ (8)

≤ Vol

(

Bn,c

(

ρ +

√
n

2

))

= (9)

= Vol (Bn,c(1))

(

ρ +

√
n

2

)n

= (10)

= Vol (Bn,c(1)) ρn

(

1 +

√
n

2ρ

)n

= (11)

= Vol (Bn,c (ρ))

(

1 +

√
n

2ρ

)n

, (12)

which is what we were looking for.
Lemma 3:Considern i.i.d. random variablesX1, . . . , Xn,

each of them following a Gaussian distribution of mean0 and
varianceσ2. Let ρ :=

√
∑n

i=1 X2
i . Then, for everyε > 0,

P
{

ρ ≤ σ
√

n (1 + ε)
}

−→ 1, asn → ∞. (13)

Proof: It is known that, sinceXi ∼ N (0, σ2), i =
1, . . . , n, thenX2

i has a gamma distribution andE[X2
i ] = σ2,

Var(X2
i ) = 2σ4. Consequently, by the independence of the

Xi,
E[ρ2] = nσ2, Var(ρ2) = 2nσ4. (14)

Given a random variableY and anyτ > 0, Chebyshev’s
inequality states that

P {|Y − E[Y ]| > τ} ≤ Var(Y )

τ2
. (15)

Then, choose anyκ > 0 and fix Y = ρ2 and τ = κ
√

2nσ2;
we have

P
{

|ρ2 − nσ2| > κ
√

2nσ2
}

≤ 1

κ2
. (16)

If we chooseκ = κ(n) such thatlimn→∞ κ = +∞, than

P
{

|ρ2 − nσ2| ≤ κ
√

2nσ2
}

−→ 1, asn → ∞. (17)

Equivalently,

P
{

ρ2 ≤ σ2n

(

1 + κ

√

2

n

)}

−→ 1, asn → ∞. (18)

Taking for example κ = log n, we have that
limn→∞ κ

√

2/n → 0 and for every ε > 0, we can
conclude that

P
{

ρ ≤ σ
√

n (1 + ε)
}

−→ 1, asn → ∞, (19)

which proves the lemma.

C. The main result

We are now ready to state our main theorem.
Theorem 4:Let n be a positive integer and letR be a real

number such that0 < R < 1. Let p = nλ be a prime number
for someλ > 0. Let ∆ = β log n be an integer number, for
someβ ∈ R. If

λ >
1

2R
and

n

log n
≥ β > λ +

3

2(1 − R)
, (20)

then there exists a family ofn-dimensional LDA latticesΛ =
C +pZ

n that achieves Poltyrev capacity and such that the row
degree in the parity-check matrix ofC is at most∆, the rate
of C is at leastR.

Proof: The family of LDA lattices that we consider is
the random ensemble described in Section IV-A. LetΛ be a
lattice of this family. Because of the lattice symmetry, we can
suppose that the point ofΛ transmitted over the channel is the
point 0. η = (η1, . . . , ηn) is the AWG noise vector and the
channel output isy = η. We suppose that the channel noise
variance isσ2 = σ2

max(1 − δ)2 for some0 < δ < 1 that can
be as small as wanted.

Lemma 3 states that, whenn is very large, the vectory
tends to lie within a sphere of radius a bit greater thanσ

√
n

and centered at0.
Let us consider the sphereB := Bn,y(σ

√
n(1+ε)) centered

at y, with ε > 0 chosen such that

ε <
δ

1 − δ
; (21)

this last condition will be useful in the following.
When n grows, the point0 is inside the sphere with

probability tending to1; the probability of errorPe is smaller
than the probability that one or more lattice points different



from 0 lie inside the sphere: if0 is the only point in
B := Bn,y(σ

√
n(1+ε)), then lattice decoding gives the correct

answer; otherwise, an error will very likely come out.
For every integer pointx ∈ B ∩ Z

n, let Xx be the random
variable defined by

Xx =

{

1, if x ∈ Λ

0, if x /∈ Λ
. (22)

SincepZ
n is contained in any LDA lattice,Xx = 1 for any

x ∈ pZ
n, independently fromΛ. That is, in order to imply

that 0 is the only point ofpZ
n which lies in B (with very

high probability whenn is big enough), we impose the prime
p to be bigger than the diameter of the sphere. In this way,
the values that a coordinate of an integer point insideB may
take, are contained in a set of representatives of the classes
modulop and, in particular, each class is represented at most
once. This implies that|pZ

n ∩ B| ≤ 1 and, if 0 is insideB,
there will not be in it any other points ofpZ

n.
Formally, the condition onp is the following:

p > 2σ
√

n(1 + ε). (23)

We want it to be satisfied for everyσ < σmax, therefore, taking
into account the upper bound

σ <
p(1−R)

√
2π e

(24)

and the fact thatp = nλ, it becomes:

nλ >

√

2

πe
(1 + ε)nλ(1−R)+ 1

2 .

This justifies the conditionλ > 1/2R in the hypothesis of
the theorem, which makes (at least asymptotically) true the
previous inequality.

Now, let N be the random variable that counts the number
of lattice points insideB that do not belong topZ

n. We will
show that

lim
n→∞

P{N = 0} = 1. (25)

By definition,

N =
∑

x∈Zn∩BrpZn

Xx. (26)

We prove the theorem if we prove (25). It is sufficient to
show that

lim
n→∞

E[N ] = 0. (27)

Notice that

E[N ] =
∑

x∈Zn∩BrpZn

E[Xx] =
∑

x∈Zn∩BrpZn

P{x ∈ Λ}. (28)

If H is the parity-check matrix ofC,

P{x ∈ Λ} = P{HxT ≡ 0 mod p} (29)

=
(

P{hxT ≡ 0 mod p}
)n(1−R)

, (30)

whereh represents any randomly built row ofH (all rows of
H are i.i.d.). Then,

E[N ] =
∑

x∈Zn∩BrpZn

(

P{hxT ≡ 0 mod p}
)n(1−R)

. (31)

Given an integer pointx ∈ Z
n

r pZ
n, suppose that

| Supp(x)| = s > 0, for some integer1 ≤ s ≤ n. We define
support of the random vectorh = (h1, . . . , hn) the set of
indices of the∆ coordinates ofh that are not deterministically
equal to0. If I = {i ∈ Supp(x) ∩ Supp(h)}, we have

P{hxT ≡ 0 mod p} = (32)

P{hxT ≡ 0 mod p | |I| = 0}P{|I| = 0} + (33)

+ P{hxT ≡ 0 mod p | |I| 6= 0}P{|I| 6= 0} = (34)

= 1 · P{|I| = 0} +
1

p
· P{|I| 6= 0} ≤ (35)

≤ P{|I| = 0} +
1

p
. (36)

There are two different situations:

• If 1 ≤ s ≤ n − ∆,

P{|I| = 0} =

(

n−s
∆

)

(

n
∆

) = (37)

=
n − ∆

n
· n − 1 − ∆

n − 1
· · · n − s + 1 − ∆

n − s + 1
= (38)

=

(

1 − ∆

n

)

·
(

1 − ∆

n − 1

)

· · ·
(

1 − ∆

n − s + 1

)

≤
(39)

≤
(

1 − ∆

n

)s

=

(

1 − β log n

n

)s

≤ (40)

≤ 1

nβs/n
. (41)

The previous inequality comes from the fact that

(

1 − β log n

n

)s

≤ 1

nβs/n
⇔ (42)

⇔ log

(

1 − β log n

n

)

≤ log
1

nβ/n
= −β log n

n
, (43)

(44)

which is true because

log(1 − x) ≤ −x for all x < 1. (45)

Notice that forn big enoughlog(1− β log n/n) is well-
defined and0 < β log n/n < 1.

• If insteadn − ∆ < s ≤ n, P{|I| = 0} = 0.



Therefore, ifn is big enough, putting together (31), (36)
and what we have just shown, recalling thatp = nλ, we get

E[N ] =
∑

x∈Zn∩BrpZn

(

P{hxT ≡ 0 mod p}
)n(1−R)

(46)

≤
n−∆
∑

s=1

∑

x∈Z
n∩BrpZ

n

| Supp(x)|=s

(

1

nβs/n
+

1

nλ

)n(1−R)

+ (47)

+

n
∑

s=n−∆+1

∑

x∈Z
n∩BrpZ

n

| Supp(x)|=s

(

1

nλ

)n(1−R)

. (48)

First of all, let us show that (48) goes to0 when n
grows. We will use the following definition: we say that a
function f(n) is asymptotic tog(n) (denotedf(n) ∼ g(n)),
if limn→∞ f(n)/g(n) = 1. Let Γ(·) be the Euler Gamma
function, then:

n
∑

s=n−∆+1

∑

x∈Z
n∩BrpZ

n

| Supp(x)|=s

(

1

nλ

)n(1−R)

≤ (49)

≤
∑

x∈Zn∩B

(

1

nλ

)n(1−R)

= (50)

= |Zn ∩ B|
(

1

nλ

)n(1−R)

≤ (51)

≤ Vol(B)

(

1 +
1

2(1 + ε)σ

)n(
1

nλ

)n(1−R)

= (52)

=
(
√

πσ
√

n(1 + ε))n

Γ
(

n
2 + 1

)

(

1 +
1

2(1 + ε)σ

)n(
1

nλ

)n(1−R)

∼
(53)

∼ (σ
√

2π e(1 + ε))n

√
πn

(

1 +
1

2(1 + ε)σ

)n(
1

nλ

)n(1−R)

=

(54)

=
((1 − δ)(1 + ε))n

√
πn

(

1 +

√
2π e

2(1 + ε)(1 − δ)nλ(1−R)

)n

.

(55)

Notice that in (52) we have used Lemma 2, (54) follows by
Stirling approximation and (55) from the fact thatσ = (1 −
δ)σmax. Now, one can show that the term in the big parenthesis
is either asymptotic to a constant or, at worst, subexponential
(i. e. asymptotic toexp(Cnµ), for some constantsC and0 <
µ < 1); hence the dominating term in (55) is((1−δ)(1+ε))n.
But (1 − δ)(1 + ε) < 1, thanks to condition (21):

(1 − δ)(1 + ε) < 1 ⇔ ε <
1

1 − δ
− 1 =

δ

1 − δ
. (56)

This implies that (55) tends to0 asn tends to infinity and the
same holds for (48).

At this point, we only have to study the behavior of (47). In
order to do it, we will separate the analysis in three subcases:
let

1 < a < 1 +
2

3 + 2λ(1 − R)
(57)

be a constant such thataλ/β < 1. We will consider separately:
1) 1 ≤ s ≤ λn/β;
2) λn/β < s < aλn/β;
3) aλn/β ≤ s ≤ n − ∆.

Note thataλn/β is really less thann−∆ if n is big enough.
First case :1 ≤ s ≤ λn/β (that is, λ ≥ βs/n). First of

all, recall thatBn,c(ρ) is the n-dimensional sphere of radius
ρ, centered atc. Notice that

|{x ∈ Z
n ∩ B r pZ

n | | Supp(x)| = s}| ≤ (58)

≤ |{x ∈ Z
n ∩ B | | Supp(x)| = s}| ≤ (59)

≤
(

n

s

)

|Zn ∩ Bs,y(σ
√

n(1 + ε))| ≤ (60)

≤ ns|Zn ∩ [−σ
√

n(1 + ε), . . . , σ
√

n(1 + ε)]s| ≤ (61)

≤ ns(2σ
√

n(1 + ε) + 1)s. (62)

This will be useful in the following:

⌊λn/β⌋
∑

s=1

∑

x∈Z
n∩BrpZ

n

| Supp(x)|=s

(

1

nβs/n
+

1

nλ

)n(1−R)

≤ (63)

≤
⌊λn/β⌋
∑

s=1

ns(2σ
√

n(1 + ε) + 1)s

(

2

nβs/n

)n(1−R)

≤ (64)

≤
⌊λn/β⌋
∑

s=1

(

C1n
λ(1−R)+3/2−β(1−R)

)s

, (65)

whereC1 is a constant. The last inequality is obtained recalling
thatσ = σmax(1− δ) = nλ(1−R)(1− δ)/

√
2π e. We conclude

by pointing out that the previous sum is a geometric series
and it tends to0 because the exponent ofn is negative, thanks
to condition (20).

Second case :λn/β < s < aλn/β (andβs/n < aλ). First
of all, notice that, if we bound

(

n
s

)

with 2n instead ofns in
(61), we have

|{x ∈ Z
n ∩ B r pZ

n | | Supp(x)| = s}| ≤ (66)

≤ 2n(2σ
√

n(1 + ε) + 1)s ≤ (67)

≤ 2n(C2n
1/2+λ(1−R)), (68)

whereC2 is a constant. This implies that

⌊aλn/β⌋
∑

s=⌊λn/β⌋+1

∑

x∈Z
n∩BrpZ

n

| Supp(x)|=s

(

1

nβs/n
+

1

nλ

)n(1−R)

≤ (69)

≤
⌊aλn/β⌋
∑

s=⌊λn/β⌋+1

∑

x∈Z
n∩BrpZ

n

| Supp(x)|=s

(

1

nβs/n

)n(1−R)

· (70)

·
(

1 + n
βs

n
−λ
)n(1−R)

≤ (71)

≤ 2n
(

1 + nλ(a−1)
)n(1−R)

· (72)

· C2
n

⌊aλn/β⌋
∑

s=⌊λn/β⌋+1

(

n1/2+λ(1−R)−β(1−R)
)s

, (73)



for some constantC2.
Let γ := 1/2 + λ(1 − R) − β(1 − R). The summation is a

(partial) geometric series and it is equal to:

1 − nγ(⌊aλn/β⌋+1)

1 − nγ
− 1 − nγ(⌊λn/β⌋+1)

1 − nγ
= (74)

nγ(⌊λn/β⌋+1) − nγ(⌊aλn/β⌋+1)

1 − nγ
∼ (75)

∼ nγ(⌊λn/β⌋+1), (76)

sinceγ is negative by hypothesis (20) anda > 1.
This implies that (69) is bounded by a function which is

asymptotic to

(2C2)
nnn(λ(a−1)(1−R)+γ(⌊λ/β⌋+1/n)) ≤ (77)

n(2C2)
nnn(λ(a−1)(1−R)+γλ/β), (78)

which goes to0 if (λ(a− 1)(1−R)+ γλ/β) is negative. Let
us check that this is true:

λ(a − 1)(1 − R) + γλ/β = (79)

= λ(a − 1)(1 − R) +

(

1

2
+ λ(1 − R) − β(1 − R)

)

λ

β
< 0 ⇔
(80)

⇔ β >
λ

2 − a
+

1

2(2 − a)(2 − R)
. (81)

This is true thanks to hypothesis (20) and the conditiona <
1 + 2/(3 + 2λ(1 − R)), which imply

λ +
3

2(1 − R)
>

λ

2 − a
+

1

2(2 − a)(2 − R)
. (82)

All of this allows us to conclude that (78) and (69) tend to0
whenn grows.

Third case :aλn/β ≤ s ≤ n − ∆. We have

n−∆
∑

s=⌊aλn/β⌋+1

∑

x∈Z
n∩BrpZ

n

| Supp(x)|=s

(

1

nβs/n
+

1

nλ

)n(1−R)

≤ (83)

≤
∑

x∈Zn∩B

(

1

nλ

)n(1−R)(

1 +
1

nβs/n−λ

)n(1−R)

= (84)

=

(

|Zn ∩ B|
(

1

nλ

)n(1−R)
)

(

1 +
1

nβs/n−λ

)n(1−R)

.

(85)

We know that the left term is (asymptotically) bounded by (55)
and goes to0 exponentially; we show now that the right term
is at most subexponential inn. Recalling thats ≥ aλn/β, it
is bounded as follows:
(

1 +
1

nβs/n−λ

)n(1−R)

≤ (86)

(

1 +
1

nλ(a−1)

)n(1−R)

∼ exp
(

n1−λ(a−1)(1 − R)
)

, (87)

with a > 1 by hypothesis. Then, also (83) is bounded by a
quantity in which the dominating term is((1 + ε)(1 − δ))n,
which goes to0 asn tends to infinity.

This ends the proof of (27), which is enough to conclude
that the theorem is true.

V. CONCLUSIONS AND FUTURE WORK

LDA lattices are obtained from Construction A with a non-
binary LDPC code. We proved in this paper that the LDA
lattice ensemble attain Poltyrev limit. This completes previous
experimental results based on iterative factor graph decoding
of LDA lattices. In a more recent work, it is proved that
Poltyrev limit is attained by a different LDA ensemble having
a small constant row weight. Our next step is to prove that
both LDA lattice ensembles can achieve1

2 log(1 + SNR) for
finite constellations.
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