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Abstract—We describe a new family of integer lattices built
from construction A and non-binary LDPC codes. An iterative
message-passing algorithm suitable for decoding in high dimen-
sions is proposed. This family of lattices, referred to as LDA
lattices, follows the recent transition of Euclidean codes from
their classical theory to their modern approach as announced
by the pioneering work of Loeliger (1997), Erez, Litsyn, and
Zamir (2004-2005). Besides their excellent performance near the
capacity limit, LDA lattice construction is conceptually simpler
than previously proposed lattices based on multiple nested binary
codes and LDA decoding is less complex than real-valued message
passing.

I. INTRODUCTION

Coding over finite alphabet for the AWGN channel has
undergone a huge effort to achieve capacity with efficient
decoding, and while this quest is arguably reaching its con-
clusion, the similar problem for infinite alphabet coding has
received much less attention and has been picking up some
momentum only lately. It has been known for some time
that lattices, the equivalent of linear codes, achieve (non-
constructively) capacity [13] [5] [6], but not many practical
lattice coding schemes have been put forward that have a
chance of approaching capacity. For large dimensions, the
more promising lattices are inspired by LDPC coding. Among
existing propositions we find [17] [2] [18] that use lattices with
an underlying binary code structure: the binary code is chosen
to be amenable to iterative decoding techniques, i.e. it belongs
to the LDPC or turbo-code families. We also find Sommer et
al.’s Low-Density Lattice Codes (LDLCs) that do not have an
embedded binary code, but are constructed directly so as to
be decodable by a scheme inspired by the LDPC techniques.

In the present work we try a somewhat different approach
to constructing efficiently decodable families of lattices. We
again rely on an underlying finite-alphabet code structure,
but depart from the binary alphabet and use LDPC codes
over non-binary alphabets. We shall call upon the celebrated
construction A technique [4] to obtain lattices from linear
codes over finite alphabets. Note that construction A is not
in itself a very restrictive scheme for lattice construction since
it has been used, relying on codes over large alphabets, to
produce (non-constructively) capacity-achieving lattices [5].

Construction A also yields some of the best asymptotic sphere-
packing densities [7].

In principle, non-integer lattices could be constructed with
the scheme presented below: we shall stay with integer lattices
however (hence the title), because it is unlikely that practically
usable non-integer lattices will realistically outperform integer
lattices. The underlying LDPC code will be chosen to be over
a prime field: LDPC codes over non-binary alphabets have
been mostly experimented with over fields of characteristic 2,
but there are no theoretical obstacles to working with prime
fields and these are the ones most suitable for our purposes.
Decoding complexity will be, as is usual in the area of iterative
decoding, essentially linear in the lattice dimension, though it
will also grow with the finite field size.

The paper is organized as follows: in Section II we shall
recall what we need from construction A in a somewhat
generalized setting. In Section III we specify our particular
construction and the channel and capacity we will be working
with. In Section IV we describe and discuss the lattice decoder.
In Section V we discuss specifics and the choice of parameters;
we also discuss simulation results. Finally, Section VI gives
concluding comments.

II. LATTICES AND CONSTRUCTION A

We will consider n-dimensional lattices Λ = ZnG with
n × n generator matrices G and basis (b1, . . . , bn) written
as row vectors. The volume of the lattice is defined as
vol(Λ) := |det(G)|. For any x ∈ Λ, its Euclidean norm is
||x|| :=

√
x2

1 + . . .+ x2
n and we denote the lattice minimum

distance as dmin(Λ) := minx∈Λr0 ||x||. The fundamental gain
of a lattice Λ is defined as

γ(Λ) :=
d2

min(Λ)

vol(Λ)2/n
. (1)

Let L be a lattice of small dimension ∆ and let L′ be a
sublattice of L such that the quotient L/L′ is finite of prime
cardinality p. The additive group L/L′ injects naturally into
the finite field Fp through an additive group isomorphism, and
we assume identification of the two abelian groups. We may
define a lattice Λ of dimension n = ∆` in the following way,



which is the general setting for construction A in Conway and
Sloane’s terminology [4]. Let C be an Fp-linear code of length
`, dimension k and rate R = k/`: let Π : L` → (L/L′)` be
the natural projection, the lattice Λ is defined as:

Λ = {x ∈ L` | Π(x) ∈ C}.
Our strategy is to design efficiently decodable lattices

through the above construction when the code C is taken to
be an LDPC code over Fp and decoded through appropriately
calibrated message-passing.

We shall focus mainly on two simple cases, namely when
(L,L′) = (Z, pZ) and (L,L′) = (Z[i], φZ[i]) where (φ) =
(a+ bi) is a prime ideal of Z[i] of norm a2 + b2 = p.

In the first case, which is one of the more classical forms
of construction A [4], it is well known that a generator matrix
for Λ has the form

G =

(
Ik Φ(B)
0 pIn−k

)
(2)

where (Ik B) is a k × ` generator matrix in systematic form
for the code C and where Φ : Fp → Z is a natural embedding
of Fp into Z, typically with Φ(Fp) = [−(p− 1)/2, (p− 1)/2].
We have vol(Λ) = pn−k = pn(1−R), with ` = n.

In the second, Gaussian integer case, taking for C an Fp-
linear code of length ` and dimension k of generator matrix
(Ik B), we have similarly, that Λ can be seen as a Z[i]-module
generated by the `× ` matrix

G′ =

(
Ik Φ(B)
0 φI`−k

)
(3)

where Φ is an embedding of Fp into a suitable region of Z[i]
via the isomorphism Fp

∼→ Z[i]/(φ): in other words, Φ(Fp)
is a set of representatives for Z[i]/(φ). To obtain a generator
matrix for the real lattice Λ of dimension n = 2`, simply apply
the transformation x + iy 7→

( x y
−y x

)
to every coordinate of

G′. In this case we have vol(Λ) = p`−k = p
1
2n(1−R). Figure 1

shows a suitable representation Φ(F41) of Z[i]/(4 + 5i) as
a constellation of Z[i] = Z2: a family of LDPC codes over
Z[i]/(4+5i) and their associated lattices will be experimented
with in the sequel.

Figure 1. A system of representatives for Z[i]/(4 + 5i)

Note that replacing Z[i] by the Eisenstein integers yields a
similar construction.

III. LDA LATTICES AND THE GAUSSIAN CHANNEL

It is now the time to define the new family of lattices
we will deal with. By means of Construction A (see Section
II), any linear code C ⊆ Fnp can be used to build a lattice.
For our particular construction, we will take C to be a Low-
Density Parity-Check (LDPC) code [8] and we will refer to
the resulting lattices as Integer Low-Density A (LDA) lattices.

In our scenario, the information to be transmitted is rep-
resented by integer vectors z ∈ Zn. The uncoded system is
then the lattice Zn of all integer points in the n-dimensional
space. Now, let Λ be an LDA lattice with generator matrix G;
its points are the codewords to be sent through the channel
and z is encoded to x = zG ∈ Λ. We are interested in
the behaviour of Λ under the additive white Gaussian noise
(AWGN) channel, that is, the channel output is

y = x+ η, with ηi ∼ N (0, σ2), i = 1, . . . , n. (4)

Following other authors, we will perform infinite lattice
decoding, that is, our decoder makes no assumption on the
shaping region and decodes as if all points of the lattice where
good candidates to be the sent codeword. In this scenario, since
a lattice has infinite energy, the usual concept of capacity loses
its sense. Poltyrev introduced in [14] the notion of generalized
capacity, which is the maximum value C∞ such that we can
construct a lattice with normalized logarithmic density smaller
than C∞ and arbitrarily small decoding error probability. In
concrete terms, it implies that there exists a lattice in big
enough dimension n for which the decoding is possible with
arbitrary small error probability if and only if

σ2 <
vol(Λ)

2
n

2πe
=: σ2

max. (5)

We have

σ2
max =

{
1

2πep
2(1−R), for (L,L′) = (Z, pZ),

1
2πep

(1−R), for (L,L′) = (Z[i], φZ[i]).
(6)

In Section V, we will evaluate the performance of LDA
lattices as a function of the noise variance: the best lattices
are the ones which attain small symbol error rates for values
of the noise variance that are close to σ2

max.We will speak of
distance from capacity, meaning the distance of the channel
noise variance from σ2

max.

IV. LDA LATTICE DECODER

In small dimensions, typically less than 100, Sphere Decod-
ing of Λ is feasible after computing the Gram matrix from (2)
or (3) [20] [3]. For high dimensions (n ≥ 1000), there is no
method to handle lattice decoding besides iterative message
passing algorithms [17] [18] [19]. The complexity of iterative
message passing is linear in n. The critical parameter in our
case is the size p of the finite field. Indeed, the p-ary LDPC
code C defining Λ can be decoded via belief propagation (BP)
or min-sum decoding [16]. Results shown in Section V are
obtained with BP. Decoding of an LDPC checknode in C is
made via the forward-backward algorithm on the syndrome
trellis [1]. The trellis has p2 transitions in its largest section.



For large p, checknode decoding should be done via Fast
Fourier Transform [9]. We describe below the factor graph
of Λ and the messages propagating on its edges.

A. Factor graph for Construction A
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Figure 2. Factor graph of a lattice from Construction A.

The factor graph [12] is derived from the lattice structure
given in Section II. Messages and constraints are given for
a Z-lattice transmitted over a memoryless AWGN channel. It
is straightforward to extend to Z[i]-lattices and other types of
memoryless channels. As shown in Figure 2, the constraints
are:
• The channel where the output conditional distribution is
yi ∼ N (xi, σ

2), i = 1, . . . , n.
• The lattice constraint given by Construction A, i.e. Λ is

the union of cosets of pZn. We have xi = Φ(ci) + pzi,
where zi ∈ Z, ci ∈ Fp, and c = (c1, c2, . . . , cn) ∈ C.

• The embedding Φ of Fp into the Euclidean space. For
(L,L′) = (Z, pZ) and ` = n, the isomorphism Φ(ci) is
simply defined as the element of [−(p− 1)/2, (p− 1)/2]
that projects onto ci modulo p. We will write ci instead
of Φ(ci) in order to simplify the notation.

• The LDPC constraint given by cHt
C = 0, where HC is a

sparse (n− k)× n parity-check matrix.

B. Probabilistic messages for Construction A

Now, let us find the expressions of messages propagating
left to right in the factor graph. The left-to-right message
produced by xi is

P (xi|yi) ∝ exp

(
− (yi − xi)2

2σ2

)
, ∀xi ∈ Z. (7)

Since we have xi = ci + pzi ≡ ci mod p, the left-to-right
message received by ci is

P (ci|yi) =
∑

xi∈Z|xi≡ci

P (xi|yi). (8)

Now we describe messages propagating right to left. The right-
to-left message produced by ci is the LDPC extrinsic informa-
tion P (ci|C, y\{yi}) determined by multiplying all messages
from its neighbouring checknodes [16]. The outgoing message
from zi is 1 in the absence of a priori information. As

shown later for our practical implementation, there is a hidden
constraint producing an a priori information π(zi). Thus, the
right-to-left message received by xi would be

P (xi|C, y\{yi}) ∝ π(zi) · P (ci|C, y\{yi}) (9)

From the above description and the fact that the a posteriori
probability (APP) of a variable node υ is determined by the
product of the two messages in the two opposite directions on
any edge connected to υ (belief propagation on an a cyclic
graph [16]), we can state the following lemma.

Lemma 1. Let Λ = C[n, k]p + pZn be an LDA lattice and
x = (x1, x2, . . . , xn) be a lattice point. A message passing
decoder should maximize APP (xi), for i = 1, . . . , n, where
the a posteriori probability for a lattice component is given by

APP (xi) ∝ P (xi|yi)π(zi)P (ci|C, y\{yi}). (10)

C. Implementation

The summation over Z in (8) decays very quickly around
yi because of the exponential behaviour given in (7). Consider
the real intervalWi = [yi−mσ, yi+mσ] where σ2 is the noise
variance from (4) and m ∈ R+. We choose m such that the
probability of the transmitted xi being outside Wi is less than
ε, i.e. 2Q(m) < ε where Q() is the Gaussian tail function.
For example, m = 6.467 and ε = 10−10. The observation for
a code symbol becomes

P (ci|yi) ≈
∑

xi∈Wi|xi≡ci

P (xi|yi). (11)

Limiting the search for a lattice component xi = ci + pzi to
Wi brings an a priori on zi. For a given symbol value ci and
a given channel observation yi, the search for the unknown
zi is now restricted to [(yi − ci −mσ)/p, (yi − ci +mσ)/p].
The number of admissible integer translations zi is µi(yi, ci)
given by

µi(yi, ci) := |{xi ∈ Wi|xi ≡ ci mod p}|. (12)

Consequently, the prior on zi is given by π(zi) = 1/µi(yi, ci).
The implementation can be further simplified if p is large
enough. Indeed, taking 2mσ ≤ p yields µi(yi, ci) = 1,
for all yi and all ci. The latter condition is satisfied when
2mσmax ≤ p, where σ2

max is given by (6), which translates
into pR ≥ 2m/

√
2πe.

Summarizing, we decode an LDA Z-lattice point coordi-
natewise as follows, for a fixed index i = 1, . . . , n:
• Initialisation: compute P (xi|yi) (7) for all xi ∈ Wi and

add them as described in (11) to get the p values of
P (ci|yi).

• Iterations: apply Belief Propagation with input P (ci|yi)
to compute the p values of P (ci|C, y\{yi}).

• Final decision: for every xi ∈ Wi, compute the product
in (10) and find the xi = x̂i that maximizes it.

An alternative strategy for the final decision consists in
taking as x̂i the closest to yi representant of the class modulo
p that maximizes the extrinsic probability P (ci|C, y\{yi}).



Notice that, when p is large enough (or when the noise is
weak enough, too), the width of the window Wi is smaller
than p itself and the classes modulo p are represented by at
most one integer around yi, as anticipated before, and the two
different strategies for the final decision eventually coincide.

V. OPTIMIZATION AND DECODING PERFORMANCE

In this section, we present some details on the choice of
the LDPC codes for the construction of the LDA lattices that
we have tested; after that, we conclude with some simulation
results and the comparison with the performance of already
known lattice families.

The core of the lattice is of course the p-ary LDPC code and
its choice may be optimized. In the classical binary setting,
an LDPC code is identified by its parity-check matrix and,
equivalently, by the associated Tanner graph. When the entries
of the parity-check matrix are non-binary, the Tanner graph is
built as usual, and in addition, a label is associated to every
edge; this label is equal to the corresponding non-zero entry
in the parity-check matrix of the code (see for example [19]).

Optimizing the choice of the p-ary code coincides with
optimizing the related labeled Tanner graph. In the binary
case, this is often reduced to choosing a graph without small
cycles. In the case of p-ary LDPC codes, we also choose in
a clever way the non-zero p-ary entries of the parity-check
matrix (that is, the p-ary labels of the graph edges). This aspect
has a significant impact on iterative decoding and has not been
previously considered. The “non-triviality” of the graph labels
guarantees the existence of better codes with respect to their
binary equivalents, resulting in a more powerful and improved
Construction A.

A. Choice of the coefficients for the parity-check equations

In order to make a good choice for the coefficients of the
parity-check matrix HC of the LDPC code, we investigate the
single parity-check (SPC) code defined by each parity-check
equation (the rows of HC). Formally, we define

CSPC := {x = (x1, . . . , xs) ∈ Fsp | a1x1 + . . .+ asxs = 0}

as the SPC code associated with the non-zero coefficients
a1, . . . , as ∈ Fp r {0} of a row of HC . We say that this
row has degree equal to s.

Note that the message-passing decoder applies MAP decod-
ing to the individual SPC codes. Contrary to the binary case,
there are many choices for an SPC code and they may have a
strong influence over MAP decoding. In particular, (7) shows
that the minimum Euclidean distance of the SPC code will
be an important parameter and we choose to optimize it. The
Euclidean minimum distance is defined as

dmin(CSPC) := min
x∈CSPCr{0}

||Φ(x)||

(where Φ is defined in Section II). Experiments confirm that
coefficients ai’s that maximize dmin(CSPC) yield a signifi-
cantly improved performance over random ai’s for construc-
tion A with (L,L′) = (Z, pZ).

We will focus for a moment on this kind of lattice and
show how to implement the good choice of the coefficients in
the particular case for which we show the simulation results
in the next subsection. With this parameters, one can see
that dmin(CSPC) cannot be greater than

√
3. The condition

dmin(CSPC) 6= 1 is an immediate consequence of the fact that
all the ai’s are non-zero. We can find how to avoid a Euclidean
minimum distance of

√
2 as follows: let (x1, . . . , xs) be a point

of CSPC of smallest Euclidean norm;

dmin(CSPC) =
√

2 ⇐⇒
√
x2

1 + . . .+ x2
s =
√

2

⇐⇒ xi, xj = ±1, ∃ i, j ∈ {1, . . . , s}
and xk = 0 ∀k 6= i, j.

(x1, . . . , xs) must satisfy the parity-check equation, that be-
comes

±ai ± aj = 0, ai = ±aj .

This means that the condition

ai 6= ±aj , ∀i, j ∈ {1, . . . , s} (13)

suffices to impose dmin(CSPC) >
√

2.
Our simulations have directed us towards the choice s = 5:

in this case the first value of p for which we may have dmin >√
2 is p = 11 and experimentally, this has turned out to be

the optimum choice of p for regular LDPCs.

B. Tanner graph construction

Generally, random graphs give good performance, provided
that one manually removes all 4-cycles and guarantees a girth
of at least 6. We have anyway preferred to use LDPC codes
whose corresponding graph is built by means of the Progres-
sive Edge-Growth algorithm (PEG) [10]. This algorithm builds
the graph edge by edge, in an iterative manner that locally
maximizes the current girth of the graph during construction.
Experimentally, we have seen that PEG-obtained graphs allow
to reach better symbol error rates (SER), thanks to a “deeper”
error floor region with respect to random graphs. At the same
time, in the waterfall region of random graphs, PEG-obtained
graphs have very similar performance.

C. Simulation results

We will show here some simulation results and compare
them with what is known in the literature about other families
of lattices used for the transmission of information.

In Figure 3, the distance from capacity is represented
as mentioned at the end of Section III. The values of the
parameters that we fix in the following are the ones that
experimentally have given the best results till now. The number
of decoding iterations has been fixed to at most 200 in all
simulations.

Let us start with an LDA lattice obtained by classical p-
ary Construction A. We have only investigated regular LDPC
codes and similarly to the case of binary LDPC’s constructed
as binary images of q-ary LDPCs [15], we have found that
a degree 2 per variable node yields the best results. As
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Figure 3. Symbol error rate versus distance to Poltyrev limit for LDA lattices.

mentioned before, the most interesting case to come up was
that of a (2, 5)-regular code with p = 11.

As described in Section V-B, the graph is built using the
PEG algorithm, with the slight modification with respect to
[10] that the check nodes degree distribution is fixed, too. The
non-zero entries of the parity-check equation are chosen as
described in Section V-A. Fig. 3 shows that for n = 1000, we
attain a SER of less than 10−6 at 1.5 dB from capacity. This
corresponds to an improvement of about 0.2 dB better with
respect to the performance of LDLC [19] at a SER of 10−5.

With a similar lattice in dimension n = 5000, we attain
a SER of less than 10−6 at 1 dB from capacity, which
corresponds to an improvement of more than 0.2 dB with
respect to Irregular LDPC lattices and of about 0.8 dB with
respect to Regular LDPC lattices (see [2]).

In dimension n = 10000, our LDA Z-lattice provides a SER
of 10−6 at 0.75 dB from capacity, which is better than what
LDLC do [19].

An even more interesting result is given by the perfor-
mance of LDA Z[i]-lattices (construction A with (L,L′) =
(Z[i], φZ[i]). As in the previous examples, the Tanner graph
is (2, 5)-regular, while the prime ideal used for the modulo
operation is (4 + 5i), corresponding to p = 41. In (real)
dimension n = 1000 (` = 500), a SER of about 10−5 is
attained at 1.25 dB from capacity, equalling the performance
of Turbo lattices [18], while, for n = 10000 (` = 5000), the
same SER is attained at about 0.7 dB from capacity.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered LDA lattices built from Con-
struction A with p-ary low-density parity-check codes. The
LDA factor graph and a simple iterative decoding algorithm
have been described. Computer simulations for LDA lattices
over the rings Z and Z[i] showed a close-to-capacity per-
formance that exceeds or matches previous propositions for
moderate dimensions (n = 1000, 10000). Also, LDA decoding
utilizes belief propagation to infer integer lattice components.
A direct extension would be the construction of LDA lattices
represented by the union of cosets of a well selected ideal in

the ring of Eisenstein integers Z[ω].
Construction A is a special case of multilevel coded modula-
tions [11] [21]. For LDA lattices, it has one coded level with
the p-ary LDPC code and one uncoded level given by pZn
with its infinite cardinality. Comparison to coded modulations
with finite constellations should be done later after building
and shaping finite LDA constellations.
The main application of LDA lattices in this paper was error
correction on a Gaussian channel, but other numerous potential
applications exist such as physical layer network coding and
physical layer security.
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