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Abstract—We consider the transmission of a common message
from a transmitter to three receivers over a broadcast channel,
referred to as a multicast channel in this case. All the receivers
are allowed to cooperate with each other over full-duplex non-
orthogonal cooperation links. We investigate the information-
theoretic upper and lower bounds on the transmission rate.
In particular, we propose a three-receiver fully interactive co-
operation scheme (3FC) based on superpositions of compress-
forward (CF) and decode-forward (DF) at the receivers. In the
3FC scheme, the receivers interactively perform CF simultane-
ously to initiate the scheme, and then DF sequentially to allow a
correlation of each layer of the DF superposition in cooperation
with the transmitter toward the next receiver in the chain to
improve the achievable rate. The analysis leads to a closed-form
expression that allows for numerical evaluation, and also gives
some insight on key points to design interactive schemes. The
numerical results provided in the Gaussian case show that the
proposed scheme outperforms existing schemes and show the
benefit of interaction.

I. INTRODUCTION

In nowadays and future wireless communication systems, an
intensification of the request of content delivery in increasingly
denser and more heterogeneous networks is taking place.
This escalation leads, among many, to a spectrum crunch
or an interference intensification. To tackle one part of this
problem, we focus on the multicast channel (MC) in which
one transmitter broadcasts a common message intended to
a whole group of users. The MC models a wide range of
scenarios, such as the streaming of multimedia content, the
spreading of data in public safety or industrial networks,
and the control signaling in sensor networks [1]. To ensure
that the transmission rate is not limited by the weakest user
in terms of channel quality, different solutions have been
proposed using multilayer strategies or massive multiple-input
multiple-output (MIMO) [2]. However, if all users wish to
obtain the same content quality, the weakest user would set
the rate and/or require a disproportionate amount of resource,
and thus impact the whole group. With the recent study of
device-to-device (D2D) mechanisms in standards [3], [4], user
cooperation in close proximity becomes possible and would
benefit to all users by ensuring the same content quality while
maintaining a low cost in terms of amount of resource and
energy [5]. Many protocols and practical schemes [6], [7]
have been proposed in the D2D area. Some schemes are
developed to opportunistically use D2D links [8], [9], and
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Supélec, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
†Mitsubishi Electric R&D Centre Europe, Rennes, France.
Email: {victor.exposito,sheng.yang}@centralesupelec.fr,
{v.exposito,n.gresset}@fr.merce.mee.com

do not require all users to decode the message. Asymptotic
behavior of large-scale random wireless networks have been
studied using stochastic geometry [10]–[12], however, the
transmitters perform a simple repetition protocol for the pur-
pose of tractability, which is in general suboptimal and leads
to a low spectral efficiency. Other metrics than the achievable
rate can be considered, such as the network lifetime [13] under
which the network has to be working for the longest possible
time.

In this work, we investigate the broadcast channel (BC) with
one transmitter sending a common message to three receivers,
also called a MC in this case. The receivers can cooperate
through a cooperation link, thus our channel is a mixture of the
MC and the relay channel (RC). The goal is to characterize the
benefits of cooperation in terms of achievable rate through an
information-theoretic analysis. The choice of three receivers
comes from the fact that it is the smallest size to clearly
show the core idea of our scheme compared to others while
remaining tractable for the information-theoretic analysis as
well as the numerical results.

The RCs [14] have been well studied in the past. In [15], two
relaying strategies called compress-forward (CF) and decode-
forward (DF) were proposed for the basic three-node network.
These schemes were then extended to larger networks [16]–
[21]. Among them, a particularly interesting scheme is the
noisy network coding (NNC) [17], [18] and its more recent
variant called the short message NNC (SNNC)1 [19]. The
NNC readily applies for multicast networks and achieves
within a constant gap to the capacity. In the NNC scheme,
the same long message (high rate) is sent in each block
using independent codebooks, and then each receiver uses CF
and relays the bin index in the next block. The message is
decoded only at the end of the whole transmission of blocks
at all receivers2. Refinements called the SNNC with a DF
option (SNNC-DF) [19] and the SNNC with rate-splitting [21]
were also developed for unicast. The capacity of the BC
with cooperation, even in the case of two receivers, remains
unknown in general, except for special cases such as the
physically degraded main channel [22]. The setup for two
receivers has been partially studied in [22], referred to as
BCs with cooperative decoders, and in [23], [24], referred to
as relay BCs. A BC with orthogonal cooperation links was
considered in [22]. In [23], [24], although the cooperation

1We do not distinguish between the NNC and SNNC schemes hereafter,
since the achievable rate of the SNNC (with backward decoding or sliding
window decoding) is equal to the one of the NNC (with joint decoding).

2In the SNNC scheme, the long message is cut into small independent ones
each sent using independent codebooks in each block.
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links are not restricted to be orthogonal, the authors assumed
that either the main channel is degraded or the cooperation
link is uni-directional. It is worth noting that achievable rate
regions of both common and private messages were provided
in [22]–[24]. In our previous work [25] we generalized the
results of [22]–[24] by studying the full-duplex non-orthogonal
cooperation link counterpart for the MCs. In that work,
we proposed the two-round interactive receiver cooperation
scheme (2RC), in which one receiver uses CF toward the other
one which in turns uses DF back to the first one. It turned
out that the 2RC scheme outperforms both the NNC and DF
cooperation schemes, which shows the benefit of interaction
between compression and decoding.

To investigate the benefit of such an interaction in a larger
network, we propose a new three-receiver fully interactive
cooperation scheme (3FC). In the proposed scheme, the
transmitter multicasts a short message, and then the network
performs sequentially the following three steps, 1) receivers 2
and 3 use CF toward receiver 1 in the first block, 2) receiver 1
cooperates with the transmitter by using DF toward receiver 2
in the second block, and 3) receivers 1 and 2 cooperate with the
transmitter by using DF toward receiver 3 in the third block. At
this point, the scheme ends for this message, giving a latency
of 3 blocks if sliding window decoding is implemented. This
sequence is repeated identically in each block until the end
of the scheme. The same holds for receivers 1, 2, and 3
exchanging roles. We present the cutset upper bound (CS)
and three lower bounds for the MC with receiver cooperation,
two of which are derived from existing results in the literature
(“no cooperation” (NC) and NNC schemes), and the third one
is a special case of our proposed scheme, which we call the
three-receiver partially interactive cooperation scheme (3PC).
Note that the 2RC is a special case of the 3PC, and that the
3PC is a special case of the proposed 3FC. The 3PC scheme is
presented to show the importance of full cooperation, i.e., each
receiver should contribute to achieve a better performance.

The structure of the proposed 3FC scheme gives some new
insights that we believe are key to design interactive schemes,
such as,
• The asymmetry of construction permits to adapt the order

of CF and DF according to the channel condition. The
non-intuitive result is that all the weakest nodes should
start the cooperation, so that the strong nodes acquire extra
information in order to use DF and then help to increase
the achievable multicast rate even more in return. This
has not been studied before to the best of the authors’
knowledge.

• The information should flow properly through the network
so that every receiver can access all the information of
the other receivers when the cooperation links are strong
enough. This permits to achieve the broadcast bottleneck
when the cooperation tends to be perfect.

• The superposition of CF and DF allows to reach a bounded
latency in terms of blocks since an early decoding is
performed sequentially at each node. It also allows to
control the number of parameters to obtain a manageable
bound.

• The bounds are general and can be applied to different

channel configurations including the orthogonal and half-
duplex cases. As such, we do not need to explicitly con-
struct different schemes for the aforementioned settings,
as is usually done in the literature.

Numerical results show that the 3FC scheme outperforms
the state-of-the-art NNC scheme among others. Moreover,
a suboptimal equivalent could be further studied by using
existing tools of the literature, as discussed throughout the
paper.

The remainder of the paper is organized as follows. Sec. II
introduces the system model and the Single-Input Single-
Output (SISO) Gaussian MC as a special case. In Sec. III
we present the 3FC, derive its special cases 3PC and 2RC.
Numerical results for the SISO Gaussian MC are provided
in Sec. IV to show that the 3FC scheme surpasses existing
schemes regarding the achievable rate and is thus a good
generalization of the results of [25]. We also further explain
the terms of the bound, and underline the importance of the
structure of the 3FC. Finally, we conclude the paper and
discuss the generalized structure of our scheme in Sec. V.

We use the following notations throughout the paper. We
denote random variables with upper case letters and their
realizations with the corresponding lower case letters. The
signals sent and received by the receiver k are denoted
respectively by Xk and Yk, the compressed version of Yk
is Ỹk, and the decoded version of Yk is Ŷk. The discrete
interval [i : j] = {i, i+ 1, . . . , j} is defined for a pair of
integers i ≤ j. The value of the signal xk at an instant i is
denoted xk[i], the value of the (j− i+1)-sequence is denoted
xk[i : j], and when i = 1 the (j)-sequence is denoted with
the simplified superscript notation xjk where [·] is dropped.
The mutual information [26], [27] between X and Y given
Z is denoted by I(X;Y |Z). The logarithms log(·) are to
base 2 and C (x) = log(1 + x). The cardinality is denoted
by | · |. We secure the use of a given letter for a given
meaning unless specified otherwise, e.g., i ∈ [1 : n] for
the time index, j ∈ [1 : b] for the block index, {k, l, q}
when used as subscript for the receiver index, m for the
message, p for the probability. The notation k 6= l 6= q means
k ∈ [1 : 3], l ∈ [1 : 3] \ {k}, q ∈ [1 : 3] \ {k, l}.

II. SYSTEM MODEL

We consider a MC with receiver cooperation, where one
transmitter sends the same information to three receivers
through the main channel as represented in Fig. 1. As a special
case of this model, the SISO Gaussian channel (Gaussian
inputs and noises) at an instant i is described by

yk[i] = hkx[i] + hlkxl[i] + hqkxq[i] + zk[i], ∀i ∈ [1 : n]
(1)

for the receiver indices k 6= l 6= q; x is the source signal, xk
is the signal transmitted by receiver k, and yk is the received
signal at receiver k; hl, hkl ∈ C are the channel coeffi-
cients from the source and from receiver k to l, respectively;
zk ∼ CN (0, σ2) is the additive white Gaussian noise (AWGN)
at receiver k, which is assumed to be i.i.d. across resources
and receivers. We assume that the channel coefficients are
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Fig. 1: MC system with receiver cooperation.

constant and known globally at every node, which corresponds
to the low-mobility scenario where the state information can
be disseminated reliably. For simplicity, the same average
power constraint is imposed for every emitting node, i.e.,∑n
i=1 |x[i]|2 ≤ nP,

∑n
i=1 |xk[i]|2 ≤ nP, k ∈ [1 : 3]. The

signal-to-noise ratios (SNR) of the main channels and of the
cooperative links are then respectively,

SNRk =|hk|2
P

σ2
, k ∈ [1 : 3] (2)

SNRkl =|hkl|2
P

σ2
, k ∈ [1 : 3], l ∈ [1 : 3] \ {k}. (3)

Instead of investigating this channel directly, we consider
the more general class of stationary memoryless channels.
In this general model, the three receivers can cooperate with
each other in full-duplex, i.e., they can transmit and receive
simultaneously, through non-orthogonal cooperation links.
This setup includes, 1) the cooperation links orthogonal to the
main channel, orthogonal links being either physically
separated medium, e.g., using different transmission
technologies over different resources, or created with
artificial orthogonalization, e.g., in time or frequency,
and 2) the half-duplex mode if the receivers transmit
and receive at a different time. The current channel
belongs to a class of stationary memoryless channels
(X × X1 × X2 × X3, p(y1, y2, y3|x, x1, x2, x3),Y1 ×
Y2 × Y3), defined as p(yn1 , y

n
2 , y

n
3 |xn, xn1 , xn2 , xn3 ) =∏n

i=1 p(y1[i], y2[i], y3[i]|x[i], x1[i], x2[i], x3[i]) where
xn ∈ Xn, xnk ∈ Xnk , and ynk ∈ Ynk , k ∈ [1 : 3]. The
probability distribution of the channel is known at every node
(perfect channel state information (CSI) at the transmitter
and receivers) by assumption. The common message M
is assumed to be uniformly distributed in M , [1 : 2nR]
where R is the number of bits per channel use. An encoder
at the transmitter side is a map f

(n)
i from the message

M to the sequence of input symbols xn, an encoder at
the receiver k, is a sequence of maps {f (n)

k,i }ni=1 from the
past received symbols yi−1

k to the transmitted symbol xk[i].
A decoder at the receiver k is a map {g(n)

k,i }ni=1 from the
received sequence ynk to M̂k ∈ M. The probability of error
is defined as P (n)

e , Pr(∪3
k=1M̂k 6= M). Finally, a rate R

is achievable if there exist a sequence of encoders/decoders(
f

(n)
i , {f (n)

1,i }i, {f
(n)
2,i }i, {f

(n)
3,i }i, {g

(n)
1,i }i, {g

(n)
2,i }i, {g

(n)
3,i }i

)
such that P (n)

e → 0 as n → ∞. Note that we obtain an
orthogonal channel if, 1) we split Yk = Ym

k × Yc
k between

the main channel and the cooperation links, 2) we split
Yk = (Y m

k , Y
c
k ) with Y m

k ∈ Ym
k , Y

c
k ∈ Yc

k, k ∈ [1 : 3], and
3) we have

p(y1, y2, y3|x, x1, x2, x3) =

p(ym
1 , y

m
2 , y

m
3 |x)

∏
k∈[1:3]

p(yc
k|x[1:3]\{k}),

i.e., the received signals from the main channel are inde-
pendent of the received signals from the cooperation links.
The information-theoretic bounds derived under those general
classes of channels can be specialized for any stationary
memoryless channel compliant to the corresponding require-
ments. Contrary to [25], in which the special cases were the
orthogonal case (noiseless cooperation links of finite capacity),
the SISO Gaussian case, and the MISO Gaussian case, in the
present paper, the orthogonal case is not studied since it is
straightforward, and the MISO Gaussian case is not studied
neither, due to its high number of parameters to optimize, and
since the conclusions would certainly be very similar to the
ones already presented.

Note that in (1), self-interference is not considered at
the receivers, i.e., it can be removed using the perfect CSI
assumption. In practice, self-interference could be dealt with
by data processing or resource decoupling. A mix of antenna
separation and of analog/digital cancellation is studied in [28],
[29], and it is shown experimentally that those techniques can
suppress from 40 dB to 80 dB of self-interference using only
off-the-shelf technologies and that it is sufficient to support
full-duplex wireless communication. Moreover, while it is
shown in [28], [30] that for an identical amount of resource,
full-duplex (subject to self-interference) does not always out-
perform half-duplex (limited by the transmit/receive time al-
location) from an achievable rate or degree-of-freedom (DoF)
point of view, we only consider full-duplex in our calculus
since the result in half-duplex can be derived as a special
case. In [31], we have shown that the 2RC full-duplex scheme
always outperforms the 2RC half-duplex schemes since the
2RC scheme does not present any kind of interference due
to its construction [25]. The conclusions could be different in
some cases for the 3FC scheme since there is more information
flowing through the network and because the sliding window
decoding does not permit to always remove all the superposi-
tion layers that are neither of interest nor already known for a
given receiver. Another model to deal with full-duplex [32] in a
multihop unicast relaying scheme uses virtual full-duplex relay
channels. In this model the receive and transmit antennas of the
relays belong to physically separated nodes. Thus, one relay is
split into two nodes (by considering that self-interference can
be dealt with) that can perform half-duplex relaying and that
are used alternatively in transmit or receive modes. The present
paper does not address higher protocol-level issues that may
arise in practice. We concentrate on the information-theoretic
bounds to design a good cooperation scheme, while keeping
in mind that a suboptimal equivalent could be implemented,
and with the anticipation that a higher level overhead will be
negligible compared to the gains reported herein.
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Block j j + 1 j + 2 j + 3

RX l D F F
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* **(a) 3FC representation.
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Fig. 2: Simplified representation of the schemes. The receiver q
is the last one to decode (D) a given short message, in
block j+3. The oblique stripes represent CF operations while
vertical and horizontal ones represent DF operations for the
3FC scheme. The CF phase forms an “initial simultaneous
CF structure” (*) to start the decoding of the current message
in the first round, while the DF phase forms a “sequential
DF structure” (**) to improve the achievable rate by using a
correlated layer in the stack of superposition toward the next
receiver in the chain.

III. PROPOSED SCHEME

In this section, we first present the intuition behind the
proposed 3FC scheme, illustrated in a simplified manner in
Fig. 2a, and present the corresponding bounds. The coding
scheme and techniques used to prove Prop. 1 are provided in
Appx. A. We then derive as a special case the 3PC scheme,
illustrated in Fig. 2b. We also show that the 2RC scheme can
be derived as a special case of the 3PC.

Unlike [22]–[24], the proposed scheme is based on block
Markov superposition coding to study a general MC with full-
duplex non-orthogonal cooperation links. The 3FC scheme
uses short message in order to use DF, as recent schemes tend
to do [19], [21]. Instead of using respectively partial DF (PDF)
as in [33], or partial compress-decode-forward (PCDF) as
in [34], which leads to a high number of parameters, we use
superpositions of CFs and DFs at each node to improve the
rate while ensuring a low number of parameters to remain
manageable. Note that a superposition of CF and DF is
different from a PCDF. When a node performs PCDF, the
current short message is partially decoded, while the remainder
of the signal (which can contain the other part of the message)
is compressed. As a consequence, the current message is fully
decoded at the end of the last block due to the symmetry of
the construction of the schemes in [33], [34] since backward
decoding is used. Note that a late decoding also occurs if a
rate-splitting strategy [21] is forced. When DF is performed,
it implies that the node can fully decode the current message
in the current block. Due to the asymmetry of construction
of the 3FC scheme, it guarantees that all nodes can decode
any given message with a bounded latency in terms of blocks
since sliding window decoding can be implemented. The
consequence is that our construction can reduce the latency
to 3 blocks for each short message, while in a wide majority

of schemes [17], [18], [21], [33], [34], all the messages are
(fully) decoded after the last block in general.

A. Presentation of the proposed cooperation scheme

Suppose without loss of generality that receiver 1 is the first
to perform DF, then receiver 2, and finally receiver 3 decodes
last, i.e., although all sub-strategies are possible for k 6= l 6= q
as illustrated in Fig. 2a, we only consider (l, k, q) = (1, 2, 3).
This sub-strategy is denoted STG(2,3)

1,2,3. We say that one node is
“stronger” than another if it decodes any given short message
before the other one. Beware that the two first receiver index
subscripts have the following meaning when used in line: kj
for the description index and lj for the bin index of block j,
where j ∈ [1 : b] and b is the number of blocks. The short
message of block j is denoted mj . The index subscript of a
given receiver is denoted as the second sub-argument, e.g.,
lj,1 is the bin index of the receiver 1 in block j. The value
of the sequence observed by receiver 1 in block j is denoted
yn1 (j), and not as a subscript since it is not generated by the
corresponding receiver. We detail the encoding and decoding
related to the short message mj , j ∈ [1 : b− 3].

• In block j, the transmitter sends a codeword as a function
of the current message mj and the past messages mj−2

and mj−3.
• The CFs are performed independently, at respectively

receiver 2 and 3, to propagate information about
(yn2 (j), yn3 (j)) described by (kj,2, kj,3) in block j, that
are binned into (lj,2, lj,3) at the end of the block. The bin
indices are relayed by the weak nodes toward the stronger
nodes in block j + 1.

• In particular, receiver 1 is the destination of all those
links, which allows it to perform an early decoding of
the message mj as m̂j,1 by jointly decoding its own
observation yn1 (j) of block j and the bin indices. At
this point, receiver 1 cannot refine information about mj

any further since the decoding step has already been
performed, thus it will use DF every time information
about this message is needed from then on.

• Receiver 2 also receives the help from receiver 3, and
stores this information for later.

• The DFs propagate information acquired by the strong
nodes toward the weaker nodes in blocks j+ 2 and j+ 3.
In particular, receiver 1 cooperates with the transmitter by
using DF toward receiver 2 and, by jointly decoding this
information with the one stored in block j+1 and its own
observation yn2 (j) of block j, receiver 2 can decode the
message mj as m̂j,2.

• In block j + 3, receivers 1 and 2 cooperate with the
transmitter by using DF toward receiver 3 which decodes
the message mj as m̂j,3. Note that the cooperation of
block j + 3 is the only one involving the cloud center3

un(·) around which xn(·| · |·), xn1 (·|·) and xn2 (·|·) are
generated, and that it is not transmitted on its own over

3An inner layer in the stack of superposition is called cloud center, in
comparison to its satellite codeword which refers to its outer layer [27]. See
Appx. A for the codebook generation.
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the channel4. Even though receiver 3 is considered to be
the weakest node, this correlated cooperation allows to
strongly increase the achievable multicast rate when the
cooperation links are strong enough.

Note that we used backward decoding at receiver 3 to ease the
proof provided in Appx. A. Then, instead of performing a slid-
ing window decoding of size 4 from block j to j+3 that would
lead to a latency of only 3 blocks, the receiver 3 decodes all the
short messages at the end of the b blocks. The receiver 3 only
needs to know (m̂j+1,3, m̂j+3,3) to decode the message mj as
m̂j,3. One can show that (m̂j,1, m̂j,2, m̂j,3) = (mj ,mj ,mj)
with high probability if the rate satisfies Prop. 1. Those steps
are repeated and superposed as presented in Tab. I of Appx. A
for all the short messages, so that any four adjacent blocks
are linked together through a block Markov superposition
coding scheme, and that those four blocks are necessary and
sufficient in the proposed scheme for all receivers to decode
the corresponding short message.

Proposition 1 (Three-receiver fully interactive cooperation
scheme). With the proposed 3FC scheme, we achieve the
following lower bound,

C ≥R3FC , max
k 6=l 6=q

max
P(k,q)
l,k,q

min
{

MISO′3×1,q,

1

2
(SIMO1×2,lk̃ + SIMO1×2,lq̃ +A1 −Rk|lq̃ −Rq|lk̃),

1

2
(SIMO1×2,lq̃ + SISOk +A2 +A1 −Rk|lq̃ −Rq|k),

SIMO1×2,lq̃ +A3 −Rk|lq̃, SIMO1×2,lk̃ +A4 −Rq|lk̃,

SISOk +A2 +A4 −Rq|k, SIMO1×2,lk̃ +A5 −Rq|lk̃,

MISO3×1,k −Rq|k,MISO2×1,l +A4 −Rk|l −Rq|lk̃,

MISO3×1,l −Rk|l −Rq|lk̃,MISO2×1,l +A5 −Rk|l

−Rq|lk̃, SIMO1×3,lk̃q̃, SIMO1×2,kq̃ +A2

}
where the first maximum is taken over the six different orders
of cooperation, the second maximum is taken over the set of
distributions P(k,q)

l,k,q ,

p(u)p(xl|u)p(x|xl)p(xk|u)p(xq)p(ỹk|xk, yk)p(ỹq|xq, yq)

with |Ỹk| ≤ |Xk||Yk| + 1 and |Ỹq| ≤ |Xq||Yq| + 1, and the
minimum is taken so that the active term corresponds to the
weakest step of the cooperation which sets the maximal rate
achievable by all the receivers. The MISO three/two to one
interference-free terms are,

MISO3×1,l =I(X,Xk, Xq;Yl|U,Xl)
MISO3×1,k =I(X,Xl, Xq;Yk|U,Xk)
MISO′3×1,q =I(U,X,Xk, Xl;Yq|Xq)

=I(X,Xk, Xl;Yq|Xq) (4)
MISO2×1,l =I(X,Xk;Yl|U,Xl, Xq),

the SISO interference-free term is,

SISOk = I(X;Yk|U,Xl, Xk, Xq),
4In comparison to X1 which is the cloud center of X , and is at the same

time transmitted on its own over the channel.

the SIMO one to two/three interference-free terms are,

SIMO1×2,lk̃ =I(X;Yl, Ỹk|U,Xl, Xk, Xq)

SIMO1×2,lq̃ =I(X;Yl, Ỹq|U,Xl, Xk, Xq)

SIMO1×2,kq̃ =I(X;Yk, Ỹq|U,Xl, Xk, Xq)

SIMO1×3,lk̃q̃ =I(X;Yl, Ỹk, Ỹq|U,Xl, Xk, Xq),

the other terms are,

A1 =I(Xk, Xq;Yl|U,Xl)
A2 =I(Xl;Yk|U,Xk)
A3 =I(Xk;Yl|U,Xl, Xq)
A4 =I(Xq;Yl|U,Xl, Xk)
A5 =I(Xq;Yk|U,Xl, Xk),

and the interference-free loss terms induced by the compres-
sions are,

Rk|l =I(Yk; Ỹk|U,X,Xl, Xk, Xq, Yl)

Rk|lq̃ =I(Yk; Ỹk|U,X,Xl, Xk, Xq, Yl, Ỹq)

Rq|k =I(Yq; Ỹq|U,X,Xl, Xk, Xq, Yk)

Rq|lk̃ =I(Yq; Ỹq|U,X,Xl, Xk, Xq, Yl, Ỹk).

The term with apostrophe (4) is the only one involving the
random variable U to cooperate toward the weakest node
of the completely symmetric cooperation case. The random
variable U is silenced in (4) due the Markov chain U ↔
(X,Xl, Xk, Xq)↔ Yq .

We omitted the time-sharing random variable in all the
information-theoretic bounds presented in this paper for
brevity. The receivers that have already decoded can cor-
relate their codewords to improve the cooperation, due to
the decoding operations and the perfect CSI. In practice
this operation, in which separated nodes sharing the same
information cooperate to transmit it to another node, is called
distributed MIMO or network beamforming [35]–[37]. It is
shown that when the cooperation is implemented correctly,
the spatial diversity gain is greater than if it was performed by
antennas confined to the same node. For fast-fading channels
it is advantageous to use independent inputs so that all nodes
can use the same encoder for all channel states. The sequential
coordination of the three-receiver cooperation scheme in the
Gaussian case is described in Appx. E. This scheme only
requires superposition of CFs and DFs, both of which are well
known. Moreover, self-interference cancellation, full-duplex
and distributed cooperation techniques exist to support our
concept and continue to be developed. Those bounds can be
applied to any given channel compliant to the corresponding
requirements, which makes the information-theoretic deriva-
tion very interesting.

B. Special cases

As a special case of the 3FC, we can get the 3PC by
turning off the CF cooperation of the weakest node of the
completely symmetric cooperation case, as illustrated in a
simplified manner in Fig. 2b.
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Corollary 1 (Three-receiver partially interactive cooperation
scheme). With the 3PC scheme, we achieve the following
lower bound,

C ≥ R3PC , max
k 6=l 6=q

max
P(k)
l,k,q

min
{
I(X,Xk, Xl;Yq|Xq),

I(X,Xl;Yk|U,Xk, Xq), I(X;Yl, Ỹk|U,Xk, Xl, Xq),

I(X,Xk;Yl|U,Xl, Xq)− I(Yk; Ỹk|U,X,Xk, Xl, Xq, Yl)
}

where P(k)
l,k,q is the set of distributions

p(u)p(xl|u)p(x|xl)p(xk|u)p(xq)p(ỹk|xk, yk) with
|Ỹk| ≤ |Xk||Yk|+ 1.

Proof: See Appx. B

Remark 1. Since the 3PC scheme is a special case of the
3FC scheme, we get R3FC ≥ R3PC, for any given probability
distribution and value. The equality R3FC = R3PC holds in
two specific cases, either when receiver 3 does not receive
information from its main channel or when both receivers 1
and 2 do not receive information from receiver 3. This comes
from the fact that if turning off the cooperation from receiver 3
were to present the best performance, the 3FC scheme would
turn off this cooperation when it is being optimized.

As a special case of the 3FC, we can get the 3FC in the
Gaussian case. The bounds are further explained in Sec. IV
with the help of Fig. 3 and Fig. 5.

Corollary 2 (3FC Gaussian channel). The proposed 3FC
scheme achieves the following lower bound expressed explic-
itly from Prop. 1 in a SISO Gaussian MC

C ≥RGauss
3FC , max

k 6=l 6=q
max

0�Σ
(k,q)
l,k,q�P I5,0≤∆k,∆q

min

{
C (β′q),

1

2

(
C

(
γl +

γk
1 + ∆k

)
+ C

(
γl +

γq
1 + ∆q

)
+ C (βl)

− C (γl)−Rk −Rq

)
,

1

2

(
C

(
γl +

γq
1 + ∆q

)
+ C (γk)

+ C (βk)− C (κk) + C (βl)− C (γl)−Rk −Rq

)
,

C

(
γl +

γq
1 + ∆q

)
+ C (κl)− C (γl)−Rk,

C

(
γl +

γk
1 + ∆k

)
+ C (λl)− C (γl)−Rq,

C (γk) + C (βk)− C (κk) + C (λl)− C (γl)−Rq,

C

(
γl +

γk
1 + ∆k

)
+ C (κk)− C (γk)−Rq,

C (βk)−Rq,C (κl) + C (λl)− C (γl)−Rk −Rq,
C (βl)−Rk −Rq,C (κl) + C (κk)− C (γk)−Rk

−Rq,C

(
γl +

γk
1 + ∆k

+
γq

1 + ∆q

)
,

C

(
γk +

γq
1 + ∆q

)
+ C (βk)− C (κk)

}

where the terms corresponding to MISO three to one

interference-free mutual information terms are composed of,

βl =SNRlρX′ + SNRklρX′k + SNRqlρXq
βk =SNRk(ρX′ + ρX′lρ

2
Ak

) + SNRlkρX′l + SNRqkρXq
+ 2
√

SNRkSNRlkρX′lρAk cos(θAk)

β′q =SNRq(ρX′ + ρX′lρ
2
Ak

+ ρUρ
2
Al
ρ2
Ak

)

+ SNRlq(ρX′l + ρUρ
2
Al

) + SNRkq(ρX′k + ρUρ
2
Bl

)

+ 2
√

SNRqSNRlq(ρX′lρAk + ρUρ
2
Al
ρAk) cos(θAk)

+ 2
√

SNRqSNRkqρUρAlρAkρBl cos(θAl + θAk − θBl)
+ 2
√

SNRlqSNRkqρUρAlρBl cos(θAl − θBl),

the terms corresponding to MISO two to one interference-free
mutual information terms are composed of,

κl =SNRlρX′ + SNRklρX′k
λl =SNRlρX′ + SNRqlρXq
κk =SNRkρX′ + SNRqkρXq ,

the terms corresponding to SISO interference-free mutual
information terms are composed of,

γl =SNRlρX′
γk =SNRkρX′
γq =SNRqρX′ ,

the interference-free loss terms induced by the compression
are,

Rk =C

(
1

∆k

)
Rq =C

(
1

∆q

)
,

and where the subscripts of β·, κ·, λ·, γ· correspond
to the destination index. The SNRs are defined in (2)
and (3). The covariance matrix Σ

(k,q)
l,k,q is defined in (35)

of Appx. C and includes the correlation coefficients 0 ≤
ρU , ρX′l , ρAl , ρX′ , ρAk , ρX′k , ρBl , ρXq ≤ 1, θAl , θAk , θBl ∈
[0, 2π). The compression noise powers are 0 ≤ ∆k,∆q .

Proof: See Appx. C
As a special case of the 3PC, one can get the 2RC [25] by

not requiring further the weakest receiver of the completely
symmetric cooperation case to decode.

Proof: See Appx. D

IV. NUMERICAL RESULTS

In this section, we focus on the SISO Gaussian MC as
defined in (1), and evaluate through numerical simulations
the achievable rate of the proposed scheme given in Prop. 1,
as well as the cutset upper bound [27, Th. 18.1] and three
lower bounds: the “no cooperation” scheme in which the
weakest user set the rate, the NNC scheme [18, Th. 1], [19,
Th. 1], and the 3PC scheme given in Coro. 1. Note that
to provide a fair comparison the parameters such as input
correlation and compression noise variance are optimized for
each bound. We study the impact of the cooperation link on
the throughput of the channel. We assume that the SNR of
the cooperation links is symmetric, i.e., SNRkl = SNRlk =
SNRcoop, k 6= l, (k, l) ∈ [1 : 3]2, and consider that
SNR1 ≥ SNR2 ≥ SNR3. In Fig. 3, we fix the SNR of the
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(c) SNR1 = SNR2 = SNR3 =
10dB (symmetric). R3FC = RNNC. The
3FC scheme outperforms the 3PC and NC
schemes.

Fig. 3: Comparison of different cooperation schemes concerning their achievable rate for a Gaussian MC with symmetric
receiver cooperation.

main channel, and plot the throughput in terms of spectral
efficiency (bit/s/Hz) by varying SNRcoop from −20 dB to
30 dB. In Fig. 3a and Fig. 3b, the main channel is asymmetric,
while in Fig. 3c the main channel is symmetric with a SNR
of 10 dB at each receiver. In all cases, both the NNC scheme
and the 3FC scheme go from the “no cooperation” lower
bound RNC when the cooperation link is weak, to the cutset
upper bound RCS when the cooperation link is strong. The
3PC scheme also grows from the RNC at low SNRcoop but
does not reach the RCS at high SNRcoop. The proposed 3FC
scheme outperforms both the NNC and the 3PC schemes in
the Gaussian case, thus it is a good generalization of the 2RC
scheme.

In Fig. 3a, the RNC remains at C (10
SNR3
10 ) = 1 bit/s/Hz,

while the RCS goes from the RNC to the broadcast bottleneck
C (10

SNR1
10 +10

SNR2
10 +10

SNR3
10 ) ≈ 3.922 bit/s/Hz as the strength

of the cooperation link increases. At low SNRcoop, the 3FC
scheme selects the bound I(X,X1, X2;Y3|X3) = C (β′3)
which is squeezed below by the R3PC (the bound of the
3PC is equivalent in terms of mutual information and the
probability distribution is less general), and above by the RCS
(the bound of the cutset upper bound is equivalent in terms of
mutual information, but the probability distribution is more
general) as the strength of the cooperation link decreases.
This bound represents the cooperation of receivers 1, 2, and
the transmitter using DF towards receiver 3, and shows that
correlating the codewords of the receivers is very helpful
when the cooperation link is weak. At high SNRcoop, the 3FC
scheme selects the bound I(X;Y1, Ỹ2, Ỹ3|U,X1, X2, X3) =

C
(
γ1 + γ2

1+∆2
+ γ3

1+∆3

)
which is squeezed below by the

RNNC (the bound of the NNC is equivalent in terms of
mutual information, but since the probability distribution is
different because of the lack of correlation, it is only equal
to C

(
SNR1 + SNR2

1+∆2
+ SNR3

1+∆3

)
in the Gaussian case), and

above by the RCS (the bound of the cutset upper bound in
terms of mutual information is I(X;Y1, Y2, Y3|X1, X2, X3)
and the probability distribution is more general) as the strength
of the cooperation link increases. This bound represents the

broadcast bottleneck, and shows that the cooperation links
have to be designed such that every receiver can access all
the information of the other receivers when the cooperation
links are strong enough, and that once again correlating the
codewords of the receivers is very helpful. Note that with
a single CF from receivers 2 and 3, the structure of the
bound at high SNRcoop is already equivalent to the one of
the NNC in terms of mutual information, so there is no need
to perform more CF on a short message, as it is also shown
in [19], [25]. Note that the 3PC scheme outperforms the NNC
scheme with weak cooperation, and conversely with strong
cooperation since the active bound at high SNRcoop is only
I(X;Y1, Ỹ2|U,X1, X2, X3). This leads to the observation that
the 3PC scheme remains lower than the 3FC scheme and goes
to C (10

SNR1
10 +10

SNR2
10 ) ≈ 3.823 bit/s/Hz since there is no CF

link coming from receiver 3, i.e., the information does not flow
properly through each node. The comments of Fig. 3a also
hold for Fig. 3b. Thus, the gain of the 3FC from SNRcoop = 0
to SNRcoop →∞ is

G3FC = log

(
1 +

3∑
k=1

SNRk

)
− log(1 + SNR3)

= log

(
1 +

SNR1 + SNR2

1 + SNR3

)
bit/s/Hz, (5)

while the gain of the 3PC is

G3PC = log

(
1 + SNR1 + SNR2

1 + SNR3

)
bit/s/Hz.

In Fig. 3c, the R3FC is equal to the RNNC. At low SNRcoop,
the 3FC scheme selects the bound C (β1)−R2−R3, and the
NNC scheme selects the bound C (SNR1 +SNR21 +SNR31)−
R2 − R3. They turn out to be equal in the symmetric case
since all receivers achieve the same performance, so the DF
operation does not bring any gain, i.e.,

ρU = ρX′1 = ρX′ = ρX′2 = ρX3 = 1 (6)
ρA1 = ρA2 = ρB1 = 0 (7)
θA1

= θA2
= θB1

= 0. (8)
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Fig. 4: Comparison of the 3FC scheme concerning the achiev-
able rate for the channel parameters

SNR1 = 10 dB, SNR2 = 5 dB SNR3 = 0 dB (9)
SNR1 = 10 dB, SNR2 = 7 dB SNR3 = 5 dB (10)
SNR1 = SNR2 = SNR3 = 10 dB (11)

of the Gaussian MC with receiver cooperation. The covariance
matrix Σ

(2,3)
1,2,3 is optimized for the solid curves, while the

network beamforming capability is turned off for the dashed
ones.

At high SNRcoop, the 3FC scheme selects the bound
C
(
γ1 + γ2

1+∆2
+ γ3

1+∆3

)
, and the NNC scheme selects the

bound C
(

SNR1 + SNR2

1+∆2
+ SNR3

1+∆3

)
. They turn out to be equal

in the symmetric case for the same reason. In conclusion, at
low SNRcoop the 3FC bounds corresponding to the CFs are
loose, while at high SNRcoop the DFs ones are loose. In the
middle range of SNRcoop, various bounds are active based on
the different configurations and their respective optimization.

Turning off the network beamforming capability offered by
the 3FC scheme is given by fixing the arbitrary distribution (6)-
(8). The results presented in our paper can be extended to its
slow-fading channel counterpart by 1) setting a target rate and
one of its corresponding channel realization (e.g., (6)-(8) in the
Gaussian case), and 2) computing the outage probability, i.e.,
the probability that any of the links is worst than the one sup-
posed for the channel realization. The network beamforming
capability is turned off and compared to the optimized network
in Fig. 4. A bounded rate penalty is observed at high SNRcoop
since turning off the network beamforming capability changes
the order of the bounds.

Suppose in Fig. 5 that the channel is completely symmetric
by adding the condition SNR1 = SNR2 = SNR3 = SNRm,
i.e., the receivers form a cluster of small size compared to the
size of the link from the transmitter to the cluster. In this case
the gain (5) becomes Gm

3FC = log
(

1 + 2SNRm
1+SNRm

)
bit/s/Hz

and grows to log(3) ≈ 1.585 bit/s/Hz as SNRm → ∞. The
abscissa of the inflection point of the different curves increases
as SNRm increases in Fig. 5a, since a stronger cooperation is
required to support the corresponding increase of rate inherent
to the enlargement of the broadcast bottleneck. In Fig. 5b, the
rate improvement from a low to a high SNRcoop, at each given
value of SNRm, is bounded by log(3) bit/s/Hz. Note that
the curves are not parallel in Fig. 5b due to the shift of the
inflection point in Fig. 5a.

Remark 2. We have underlined a number of rules that are,
1) use superpositions of CFs and DFs to obtain a bounded
latency in terms of blocks, 2) obtain bounds with a good
structure in mutual information for the two extreme cases,
i.e., when the cooperation link is weak and strong by using
DFs and CFs respectively, and by letting information flow
properly through each node, 3) DFs can only be used when
short messages are used, and refine information about a
short message after that the decoding step has already been
performed is of no use, thus CF should be used before DF on
a given short message at a given node, 4) perform the CFs
in the first round in an “initial simultaneous CF structure”
and do not use it further on short messages, and 5) approach
the probability distribution of the cutset upper bound by using
DF in a “sequential DF structure” to exploit the correlation
of the codebooks between the receivers and the transmitter.

V. SUMMARY AND DISCUSSION

In this paper, we investigated the impact of receiver cooper-
ation on the throughput of a three-receiver MC. We proposed a
fully interactive cooperation scheme based on an information-
theoretic analysis that remains tractable. We showed through
numerical results focusing on the SISO Gaussian MC that
our proposed 3FC scheme outperforms existing schemes in
which no interaction is exploited or in which information
does not flow properly through each node. This asymmetric
interaction comes from the specific superpositions of CF and
DF at the transmitter and receivers that we developed, and
permits to enlarge the achievable rate while preserving a
bounded latency in terms of blocks. The “initial simultaneous
CF structure” initiates the scheme, and the “sequential DF
structure” improves the achievable rate by using correlated
layers in the stack of superposition. Our results revealed that
interaction is particularly helpful in comparison to the NNC
and the 3PC when the main channel has a slight asymmetry.
When the main channel is symmetric the 3FC is equal to the
NNC, while when the main channel is very asymmetric the
3FC tends to the 3PC.

The bounds in the general case of K ≥ 2 receivers
eludes us because of 1) the complexity induced by the sliding
windows of increasing size that have to be handled for each
new receiver performing DF that is added to the system,
and 2) the chain rules and the Fourier-Motzkin elimination
procedure that would have to be applied on the bounds to get a
closed-form expression. Even with the closed-form expression,
it is doubtful that an easy comparison would be possible
between the expression of the K-receiver fully interactive
cooperation scheme (KFC) and, e.g., the NNC, due to the
inherent differences of the bounds and of their respective
probability distribution, and to the complexity of the numerical
comparison since the number of parameters to optimize would
quickly increase. The gain of such a scheme as defined
in (5) would be GKFC = log

(
1 +

∑K−1
k=1 SNRk
1+SNRK

)
bit/s/Hz,

and in the completely symmetric case, Gm
KFC would grow to

log(K) bit/s/Hz as SNRm →∞. However, as a result of our
work, we can give the structure of the KFC. In the KFC, the
transmitter multicasts a short message and then sequentially,
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Fig. 5: Comparison of the 3FC scheme concerning the achievable rate for a completely symmetric Gaussian MC with receiver
cooperation.

1) in the first round, all the receivers except the strongest
use CF toward the strongest receiver, labeled receiver 1, and
2) recursively, in each of the following K − 1 rounds, e.g.,
round r ∈ [2 : K], all the r − 1 receivers that have already
decoded the current message cooperate with the transmitter
(use a correlated layer in their stack of superposition) by using
DF toward receiver r. Note that all the receivers using DF have
to perform a sliding window decoding, and that receiver K can
perform either a sliding window decoding (then, the latency is
of only K blocks) or a backward decoding since it does not
use DF. It follows that the probability distribution is

p(u0)

K−3∏
k=1

p(uk|uk−1)p(x1|uK−3)p(x|x1)

·
K∏
k=2

p(xk|uK−1−k)

K∏
k=2

p(ỹk|xk, yk), (12)

where
∏b
k=a exists only if a ≤ b and u0 , u. The super-

position structure defined by (12) is illustrated in Fig. 6. The
transmitter multicasts codewords with the structure presented
in the first column. The receiver 1 generates codewords with
the structure presented in the same column but without the
last upper layer since it has already decoded all the previous
messages but not the current one. Recursively for all the
remaining receivers, every receiver has one less DF layer until
finally the last receiver is reached. The last receiver does not
have a DF layer since it does not perform DF toward any other
receiver. Each DF layer is identical for all the receivers that
have already decoded the corresponding message since they
share the same information, and thus can construct the same
clouds in the codeword and correlate it accordingly. All the
receivers except the strongest present a CF layer. Those layers
may differ from one receiver to the other, since no decoding
operation has been performed on this information yet. Those
layers are intended to all the receivers that are stronger than
the ones transmitting it, and will be stored and used in later
rounds to decode the corresponding messages.

Remark 3. Even if the bounds remain unknown, it is possible
to construct a suboptimal equivalent cooperation scheme

X
X1 X2

UK−3
. . .

...
. . .

U1 XK−1

U0 , U XK

Fig. 6: Superposition structure for K receivers.

which would improve the achievable rate. Another possibility
could be to form clusters of sizes 2 and 3 in which cooperation
could be performed as in the 2RC [25] and the 3FC schemes.
The best way to proceed and its performance, for an arbitrary
number of users, remains unknown.

More recently, the distributed decode-forward (DDF) [33]
and even more the generalization of the NNC and DDF called
the NNC with PDF (NNC-PDF) [34] have been proposed
for similar networks. Such schemes seem promising since
they exploit synergies between PDFs and PCDFs, respectively.
Unfortunately, the achievable rate regions of such schemes
involve some auxiliary random variable which makes their
evaluation and fair comparison to our results extremely com-
plicated. Nevertheless, it remains an interesting future direc-
tion of investigation.

APPENDIX A
DESCRIPTION OF THE PROPOSED SCHEME

We consider STG(2,3)
1,2,3 illustrated in Fig. 7. In Tab. I, the

encoding and decoding related to the short message mj are
underlined, and the thick arrows correspond to the decoding
steps. The patterns in Tab. I and Fig. 2a represent, 1) CF
operations for the oblique stripes at respectively receiver 2
( ) and 3 ( ), and 2) DF operations for the vertical and
horizontal stripes toward receiver 2 ( ) and 3 ( ), with the
same respective patterns. A sequence of (b − 3) messages
Mj , j ∈ [1 : b− 3], are selected independently and uniformly
over [1 : 2nR] and are separately encoded and transmitted
over b blocks. The average rate R b−3

b tends to R as b→∞.
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Mj ,
j ∈ [1 : b− 3] TX

Xn(mj |mj−2|mj−3)

Y n
1 (j)

RX 1

Xn
1 (m̂j−2,1|m̂j−3,1)

M̂j−1,1,
j ∈ [2 : b− 2]

Y n
2 (j)

RX 2

Xn
2 (lj−1,2|m̂j−3,2)

M̂j−2,2,
j ∈ [3 : b− 1]

Y n
3 (j)

RX 3

Xn
3 (lj−1,3)

M̂j−3,3,
j ∈ [4 : b],

if M̂j−2,3, M̂j,3

PY1,Y2,Y3|
X,X1,X2,X3

Fig. 7: The MC with receiver cooperation for the 3FC scheme STG(2,3)
1,2,3.

Block j j + 1 j + 2 j + 3

U un(mj−3) un(mj−2) un(mj−1) un(mj)

X xn(mj |mj−2|mj−3) xn(mj+1|mj−1|mj−2) xn(mj+2|mj |mj−1) xn(mj+3|mj+1|mj)

Y1 yn1 (j) yn1 (j + 1) yn1 (j + 2) yn1 (j + 3)

X1 xn
1 (m̂j−2,1|m̂j−3,1) xn

1 (m̂j−1,1|m̂j−2,1) xn
1 (m̂j,1|m̂j−1,1) xn

1 (m̂j+1,1|m̂j,1)

Ŷ1
m̂j−1,1, l̂j−1,2,

k̂j−1,2, l̂j−1,3, k̂j−1,3

m̂j,1, l̂j,2,

k̂j,2, l̂j,3, k̂j,3

m̂j+1,1, l̂j+1,2,

k̂j+1,2, l̂j+1,3, k̂j+1,3

m̂j+2,1, l̂j+2,2,

k̂j+2,2, l̂j+2,3, k̂j+2,3

Y2 yn2 (j) yn2 (j + 1) yn2 (j + 2) yn2 (j + 3)

Ỹ2
ỹn2 (kj,2|lj−1,2|m̂j−3,2),

lj,2

ỹn2 (kj+1,2|lj,2|m̂j−2,2),
lj+1,2

ỹn2 (kj+2,2|lj+1,2|m̂j−1,2),
lj+2,2

ỹn2 (kj+3,2|lj+2,2|m̂j,2),
lj+3,2

X2 xn
2 (lj−1,2|m̂j−3,2) xn

2 (lj,2|m̂j−2,2) xn
2 (lj+1,2|m̂j−1,2) xn

2 (lj+2,2|m̂j,2)

Ŷ2 m̂j−2,2, l̂j−1,3, k̂j−1,3 m̂j−1,2, l̂j,3, k̂j,3 m̂j,2, l̂j+1,3, k̂j+1,3 m̂j+1,2, l̂j+2,3, k̂j+2,3

Y3 yn3 (j) yn3 (j + 1) yn3 (j + 2) yn3 (j + 3)

Ỹ3
ỹn3 (kj,3|lj−1,3),

lj,3

ỹn3 (kj+1,3|lj,3),
lj+1,3

ỹn3 (kj+2,3|lj+1,3),
lj+2,3

ỹn3 (kj+3,3|lj+2,3),
lj+3,3

X3 xn
3 (lj−1,3) xn

3 (lj,3) xn
3 (lj+1,3) xn

3 (lj+2,3)

Ŷ3
m̂j−3,3,

if m̂j−2,3, m̂j,3

m̂j−2,3,
if m̂j−1,3, m̂j+1,3

m̂j−1,3,
if m̂j,3, m̂j+2,3

m̂j,3,

if m̂j+1,3, m̂j+3,3

TABLE I: Encoding, transmission, quantization distortion, and decoding for the MC with receiver cooperation for the 3FC
scheme STG(2,3)

1,2,3. The table focuses on the message mj and its representations. The curved arrows correspond to the first
multicast of the message mj . The oblique stripes represent CF operations while vertical and horizontal ones represent DF
operations. The thick arrows correspond to the decoding steps.

The set of weak ε-typical (n)-sequences T (n)
ε used are defined

as in [26], [27]; this permits to apply continuous probability
distributions to our bounds. Beware that for simplicity, the
receiver index subscripts (l, k, q) = (1, 2, 3) are fixed in this
proof, and that, kj denotes the description index and lj denotes
the bin index of block j as explained in Sec. III-A.

Codebook generation. Fix the probability distribution,

p(u)p(x1|u)p(x|x1)p(x2|u)p(x3)

· p(y1, y2, y3|x, x1, x2, x3)p(ỹ2|x2, y2)p(ỹ3|x3, y3).

Generate at random an independent codebook for each block
(only four such independent codebooks used for every con-
secutive quadruple-block are required, so that joint decoding
over any four adjacent blocks result in independent error
events). For j ∈ [1 : b], randomly and independently
generate 2nR sequences (cloud center) un(mj−3), mj−3 ∈
[1 : 2nR], each according to

∏n
i=1 pU (u[i]). For each

mj−3 ∈ [1 : 2nR], randomly and conditionally indepen-
dently generate 2nR sequences (satellite codeword of U and
cloud center of X1) xn1 (mj−2|mj−3), mj−2 ∈ [1 : 2nR],
each according to

∏n
i=1 pX1|U (x1[i]|u[i](mj−3)). For each

(mj−2,mj−3) ∈ [1 : 2nR]2, randomly and condition-
ally independently generate 2nR sequences (satellite code-
word of X1) xn(mj |mj−2|mj−3), mj ∈ [1 : 2nR], each

according to
∏n
i=1 pX|X1

(x[i]|x1[i](mj−2|mj−3)). For each
mj−3 ∈ [1 : 2nR], randomly and conditionally independently
generate 2nR2 sequences xn2 (lj−1,2|mj−3), lj−1,2 ∈ [1 :
2nR2 ], each according to

∏n
i=1 pX2|U (x2[i]|u[i](mj−3)). For

each (lj−1,2,mj−3) ∈ [1 : 2nR2 ] × [1 : 2nR], randomly
and conditionally independently generate 2nR̃2 sequences
ỹn2 (kj,2|lj−1,2|mj−3), kj,2 ∈ [1 : 2nR̃2 ], each according
to
∏n
i=1 pỸ2|X2

(ỹ2[i]|x2[i](lj−1,2|mj−3)). Randomly and in-
dependently generate 2nR3 sequences xn3 (lj−1,3), lj−1,3 ∈
[1 : 2nR3 ], each according to

∏n
i=1 pX3

(x3[i]). For each
lj−1,3 ∈ [1 : 2nR3 ], randomly and conditionally independently
generate 2nR̃3 sequences ỹn3 (kj,3|lj−1,3), kj,3 ∈ [1 : 2nR̃3 ],
each according to

∏n
i=1 pỸ3|X3

(ỹ3[i]|x3[i](lj−1,3)).
The codebooks are defined as,

Cj =
{

(un(mj−3), xn(mj |mj−2|mj−3), xn1 (mj−2|mj−3),

xn2 (lj−1,2|mj−3), ỹn2 (kj,2|lj−1,2|mj−3), xn3 (lj−1,3),
ỹn3 (kj,3|lj−1,3))|mj ,mj−2,mj−3 ∈ [1 : 2nR],

lj−1,2 ∈ [1 : 2nR2 ], kj,2 ∈ [1 : 2nR̃2 ], lj−1,3 ∈ [1 : 2nR3 ],

kj,3 ∈ [1 : 2nR̃3 ]
}
,

for j ∈ [1 : b]. Partition the set [1 : 2nR̃2 ] into 2nR2 equal size
bins B(lj,2) = [(lj,2−1)2n(R̃2−R2)+1 : lj,22n(R̃2−R2)], lj,2 ∈
[1 : 2nR2 ], R̃2 ≥ R2. Partition the set [1 : 2nR̃3 ] into
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2nR3 equal size bins B(lj,3) = [(lj,3 − 1)2n(R̃3−R3) + 1 :

lj,32n(R̃3−R3)], lj,3 ∈ [1 : 2nR3 ], R̃3 ≥ R3. The codebooks
and the bin assignments are revealed to all parties.

Encoding. Let mj ∈ [1 : 2nR] be the message to be sent
over the block j. The encoder transmits xn(mj |mj−2|mj−3)
from the codebook Cj , of first cloud center un(mj−3), where
m−2 = m−1 = m0 = mb−2 = mb−1 = mb = 1 by
convention.

Relay encoding at receiver 2. Let l0,2 = lb−2,2 = lb−1,2 = 1
and m̂−2,2 = m̂−1,2 = m̂0,2 = 1 by convention. At the end
of block j, the relay receiver 2 finds an index kj,2 s.t.,

(yn2 (j), ỹn2 (kj,2|lj−1,2|m̂j−3,2),

xn2 (lj−1,2|m̂j−3,2), un(m̂j−3,2)) ∈ T (n)
ε′ .

If there is more than one such index, it selects one of them
uniformly at random. If there is no such index, it selects an
index from [1 : 2nR̃2 ] uniformly at random. In block j + 1
the relay receiver 2 transmits xn2 (lj,2|m̂j−2,2) from codebook
Cj+1, where kj,2 ∈ B(lj,2), and m̂j−2,2 was decoded in
block j.

Relay encoding at receiver 3. Let l0,3 = lb−2,3 = lb−1,3 = 1
by convention. At the end of block j, the relay receiver 3 finds
an index kj,3 s.t. (yn3 (j), ỹn3 (kj,3|lj−1,3), xn3 (lj−1,3)) ∈ T (n)

ε′ .
If there is more than one such index, it selects one of them
uniformly at random. If there is no such index, it selects an
index from [1 : 2nR̃3 ] uniformly at random. In block j + 1
the relay receiver 3 transmits xn3 (lj,3) from codebook Cj+1,
where kj,3 ∈ B(lj,3).

Decoding at receiver 1. Let ε > ε′. At the end of
block j + 1, the decoder receiver 1 finds the unique pair of
indices (l̂j,2, l̂j,3) s.t.,

(xn2 (l̂j,2|m̂j−2,1), xn3 (l̂j,3), xn1 (m̂j−1,1|m̂j−2,1),

yn1 (j + 1), un(m̂j−2,1)) ∈ T (n)
ε′ .

It then finds the unique message m̂j,1 s.t.,

(xn(m̂j,1|m̂j−2,1|m̂j−3,1), xn2 (l̂j−1,2|m̂j−3,1),

ỹn2 (k̂j,2|l̂j−1,2|m̂j−3,1), xn3 (l̂j−1,3), ỹn3 (k̂j,3|l̂j−1,3),

xn1 (m̂j−2,1|m̂j−3,1), yn1 (j), un(m̂j−3,1)) ∈ T (n)
ε ,

for some k̂j,2 ∈ B(l̂j,2) and k̂j,3 ∈ B(l̂j,3).
Relay encoding at receiver 1. Let m̂−2,1 = m̂−1,1 =

m̂0,1 = m̂b−2,1 = 1 by convention. In block j + 2 the
relay receiver 1 transmits xn1 (m̂j,1|m̂j−1,1) from the codebook
Cj+2.

Sliding window decoding at receiver 2. Let ε > ε′. At the
end of block j + 1, the decoder receiver 2 finds the unique
index l̂j,3 s.t.,

(xn3 (l̂j,3), xn1 (m̂j−1,2|m̂j−2,2), xn2 (lj,2|m̂j−2,2),

yn2 (j + 1), un(m̂j−2,2)) ∈ T (n)
ε′ ,

where m̂j−2,2 was decoded in block j, and m̂j−1,2 was
decoded in block j+1. At the end of block j+2, the decoder
receiver 2 then finds the unique message m̂j,2 s.t.,

(xn(m̂j,2|m̂j−2,2|m̂j−3,2), xn1 (m̂j−2,2|m̂j−3,2),

xn3 (l̂j−1,3), ỹn3 (k̂j,3|l̂j−1,3), xn2 (lj−1,2|m̂j−3,2),

yn2 (j), un(m̂j−3,2)) ∈ T (n)
ε ,

for some k̂j,3 ∈ B(l̂j,3), and,

(xn1 (m̂j,2|m̂j−1,2), xn2 (lj+1,2|m̂j−1,2),

yn2 (j + 2), un(m̂j−1,2)) ∈ T (n)
ε

simultaneously.
Backward decoding at receiver 3. After all b blocks are

received the decoder receiver 3 realizes a backward decoding.
For j = b − 3, b − 4, . . . , 1, the decoder receiver 3 finds the
unique message m̂j,3 s.t. there exist a lj+2,2 ∈ [1 : 2nR2 ] s.t.,

(xn(m̂j+3,3|m̂j+1,3|m̂j,3), xn1 (m̂j+1,3|m̂j,3),

xn2 (lj+2,2|m̂j,3), xn3 (lj+2,3), yn3 (j + 3), un(m̂j,3)) ∈ T (n)
ε ,

successively with the initial conditions m̂b−2,3 = m̂b−1,3 =
m̂b,3 = 1. If there is more than one such index, it selects one
of them uniformly at random.

The probability of decoding error is analyzed at the decoder
receivers 1, 2, and 3, for the message Mj averaged over
codebooks.

Analysis of the probability of error at receiver 1. Assume
without loss of generality that Mj−3 = Mj−2 = Mj = 1
and let Lj−1,2, Lj,2,Kj,2, Lj−1,3, Lj,3,Kj,3 denote the indices
chosen by the relays receiver 2 and receiver 3 in blocks j
and j + 1. Then, the decoder receiver 1 makes an error only
if one or more of the following events occur,

E(2,3)
(1)1,2,3(j − 3) =

{
M̂j−3,1 6= 1

}
and E(2,3)

(1)1,2,3(j − 2)

(13)
Ẽ(2)(j) =

{
(Y n2 (j), Ỹ n2 (kj,2|Lj−1,2|M̂j−3,2),

Xn
2 (Lj−1,2|M̂j−3,2), Un(M̂j−3,2)) 6∈ T (n)

ε′

∀kj,2 ∈ [1 : 2nR̃2 ]
}

(14)

Ẽ(3)(j) =
{

(Y n3 (j), Ỹ n3 (kj,3|Lj−1,3), Xn
3 (Lj−1,3)) 6∈ T (n)

ε′

∀kj,3 ∈ [1 : 2nR̃3 ]
}

(15)

E(1)1(j) =
{
L̂j,2 6= Lj,2

}
and E(1)1(j − 1) (16)

E(1)2(j) =
{
L̂j,3 6= Lj,3

}
and E(1)2(j − 1) (17)

E(1)3(j) =
{

(Xn(1|M̂j−2,1|M̂j−3,1), Xn
2 (L̂j−1,2|M̂j−3,1),

Ỹ n2 (Kj,2|L̂j−1,2|M̂j−3,1), Xn
3 (L̂j−1,3),

Ỹ n3 (Kj,3|L̂j−1,3), Xn
1 (M̂j−2,1|M̂j−3,1), Y n1 (j),

Un(M̂j−3,1)) 6∈ T (n)
ε

}
(18)

E(1)4(j) =
{

(Xn(mj,1|M̂j−2,1|M̂j−3,1), Xn
2 (L̂j−1,2|M̂j−3,1),

Ỹ n2 (Kj,2|L̂j−1,2|M̂j−3,1), Xn
3 (L̂j−1,3),

Ỹ n3 (Kj,3|L̂j−1,3), Xn
1 (M̂j−2,1|M̂j−3,1), Y n1 (j),

Un(M̂j−3,1)) ∈ T (n)
ε

for some mj,1 6= 1
}

(19)
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E(1)5(j) =
{

(Xn(mj,1|M̂j−2,1|M̂j−3,1), Xn
2 (L̂j−1,2|M̂j−3,1),

Ỹ n2 (k̂j,2|L̂j−1,2|M̂j−3,1), Xn
3 (L̂j−1,3),

Ỹ n3 (Kj,3|L̂j−1,3), Xn
1 (M̂j−2,1|M̂j−3,1), Y n1 (j),

Un(M̂j−3,1)) ∈ T (n)
ε

for some k̂j,2 ∈ B(L̂j,2), k̂j,2 6= Kj,2,mj,1 6= 1
}
(20)

E(1)6(j) =
{

(Xn(mj,1|M̂j−2,1|M̂j−3,1), Xn
2 (L̂j−1,2|M̂j−3,1),

Ỹ n2 (Kj,2|L̂j−1,2|M̂j−3,1), Xn
3 (L̂j−1,3),

Ỹ n3 (k̂j,3|L̂j−1,3), Xn
1 (M̂j−2,1|M̂j−3,1), Y n1 (j),

Un(M̂j−3,1)) ∈ T (n)
ε

for some k̂j,3 ∈ B(L̂j,3), k̂j,3 6= Kj,3,mj,1 6= 1
}
(21)

E(1)7(j) =
{

(Xn(mj,1|M̂j−2,1|M̂j−3,1), Xn
2 (L̂j−1,2|M̂j−3,1),

Ỹ n2 (k̂j,2|L̂j−1,2|M̂j−3,1), Xn
3 (L̂j−1,3),

Ỹ n3 (k̂j,3|L̂j−1,3), Xn
1 (M̂j−2,1|M̂j−3,1), Y n1 (j),

Un(M̂j−3,1)) ∈ T (n)
ε

for some k̂j,2 ∈ B(L̂j,2), k̂j,2 6= Kj,2,

k̂j,3 ∈ B(L̂j,3), k̂j,3 6= Kj,3,mj,1 6= 1
}
. (22)

Analysis of the probability of error at receiver 2. Assume
without loss of generality that Mj−3 = Mj−2 = Mj−1 =
Mj = 1 and let M̂j−3,1, M̂j−2,1, M̂j−1,1, M̂j,1 denote the
indices chosen by the relay receiver 1 in blocks j− 1, j, j+ 1
and j + 2, and M̂j−3,2, M̂j−2,2, M̂j−1,2 be the relay estimate
of M̂j−3,1, M̂j−2,1, M̂j−1,1 at the decoder receiver 2, and
let Lj−1,3, Lj,3,Kj,3 denote the indices chosen by the relay
receiver 3 in blocks j and j+ 1, and L̂j−1,3, L̂j,3 be the relay
estimates of Lj−1,3, Lj,3 at the decoder receiver 2. Then, the
decoder receiver 2 makes an error only if one or more of the
following events occur,

E(2,3)
(1)1,2,3(j − 3) =

{
M̂j−3,1 6= 1

}
, E(2,3)

(1)1,2,3(j − 2),

E(2,3)
(1)1,2,3(j − 1), and E(2,3)

(1)1,2,3(j) (23)

E(2,3)
(2)1,2,3(j − 3) =

{
M̂j−3,2 6= 1

}
, E(2,3)

(2)1,2,3(j − 2),

and E(2,3)
(2)1,2,3(j − 1) (24)

Ẽ(3)(j) =
{

(Y n3 (j), Ỹ n3 (kj,3|Lj−1,3), Xn
3 (Lj−1,3)) 6∈ T (n)

ε′

∀kj,3 ∈ [1 : 2nR̃3 ]
}

(25)

E(2)1(j) =
{
L̂j,3 6= Lj,3

}
and E(2)1(j − 1) (26)

E(2)2(j) =
{

(Xn(M̂j,2|M̂j−2,2|M̂j−3,2),

Xn
1 (M̂j−2,2|M̂j−3,2), Xn

2 (Lj−1,2|M̂j−3,2),

Xn
3 (L̂j−1,3), Ỹ n3 (Kj,3|L̂j−1,3), Y n2 (j),

Un(M̂j−3,2)) 6∈ T (n)
ε

or (Xn
1 (M̂j,2|M̂j−1,2), Xn

2 (Lj+1,2|M̂j−1,2),

Y n2 (j + 2), Un(M̂j−1,2)) 6∈ T (n)
ε

}
(27)

E(2)3(j) =
{

(Xn(mj,2|M̂j−2,2|M̂j−3,2),

Xn
1 (M̂j−2,2|M̂j−3,2), Xn

2 (Lj−1,2|M̂j−3,2),

Xn
3 (L̂j−1,3), Ỹ n3 (Kj,3|L̂j−1,3),

Y n2 (j), Un(M̂j−3,2)) ∈ T (n)
ε

and (Xn
1 (mj,2|M̂j−1,2), Xn

2 (Lj+1,2|M̂j−1,2),

Y n2 (j + 2), Un(M̂j−1,2)) ∈ T (n)
ε

for some mj,2 6= M̂j,1

}
(28)

E(2)4(j) =
{

(Xn(mj,2|M̂j−2,2|M̂j−3,2),

Xn
1 (M̂j−2,2|M̂j−3,2), Xn

2 (Lj−1,2|M̂j−3,2),

Xn
3 (L̂j−1,3), Ỹ n3 (k̂j,3|L̂j−1,3),

Y n2 (j), Un(M̂j−3,2)) ∈ T (n)
ε

and (Xn
1 (mj,2|M̂j−1,2), Xn

2 (Lj+1,2|M̂j−1,2),

Y n2 (j + 2), Un(M̂j−1,2)) ∈ T (n)
ε for some

k̂j,3 ∈ B(L̂j,3), k̂j,3 6= Kj,3,mj,2 6= M̂j,1

}
. (29)

Analysis of the probability of error at receiver 3. Assume
without loss of generality that Mj = Mj+1 = Mj+3 = 1
and let M̂j,1, M̂j+1,1 denote the indices chosen by the relay
receiver 1 in block j + 3, Lj+2,2 = 1, M̂j,2 denote the
indices chosen by the relay receiver 2 in block j + 3, and
M̂j+1,3, M̂j+3,3 be the relay estimate of Mj+1,Mj+3 at the
decoder receiver 3, and Lj+2,3 = 1 denote the index chosen by
the relay receiver 3 in block j+3. Then, the decoder receiver 3
makes an error only if one or more of the following events
occur,

E(2,3)
(1)1,2,3(j) =

{
M̂j,1 6= 1

}
and E(2,3)

(1)1,2,3(j + 1) =
{
M̂j+1,1 6= 1

}
(30)

E(2,3)
(2)1,2,3(j) =

{
M̂j,2 6= 1

}
(31)

E(2,3)
(3)1,2,3(j + 1) =

{
M̂j+1,3 6= 1

}
and E(2,3)

(3)1,2,3(j + 3) =
{
M̂j+3,3 6= 1

}
(32)

E(3)1(j) =
{

(Xn(M̂j+3,3|M̂j+1,3|M̂j,3), Xn
1 (M̂j+1,3|M̂j,3),

Xn
2 (lj+2,2|M̂j,3), Xn

3 (Lj+2,3), Y n3 (j + 3),

Un(M̂j,3)) 6∈ T (n)
ε ∀lj+2,2 ∈ [1 : 2nR2 ]

}
(33)

E(3)2(j) =
{

(Xn(M̂j+3,3|M̂j+1,3|mj,3), Xn
1 (M̂j+1,3|mj,3),

Xn
2 (lj+2,2|mj,3), Xn

3 (Lj+2,3), Y n3 (j + 3),

Un(mj,3)) ∈ T (n)
ε for some

mj,3 6= 1, lj+2,2 ∈ [1 : 2nR2 ]
}
. (34)

Note that receiver 3 does not decode lj+2,2 since it contains
information about mj+2, which has already been decoded in
the backward decoding procedure, and so it does not bring any
new information. Thus, either m̂j,3 = mj and receiver 3 only
needs to find a satellite index lj+2,2 so that all the sequences
considered are typical, or m̂j,3 6= mj and the cloud center
selected at receiver 3 for xn2 (lj+2,2|m̂j,3) is not the right
one, so the index has no further impact on the probability
of error since only the mj has to be correctly decoded at
each receiver. Moreover, as previously underlined, if sliding
window decoding is implemented, the scheme ends for a given
message mj in the block j + 4, giving a latency of 3 blocks.
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We used backward decoding at receiver 3 to ease the error
events provided.

Due to space restrictions, the details of the formal proof
are omitted. By induction, the probability of error of the
terms (13), (23), (24), and (30)-(32) tend to zero as n → ∞
for every j ∈ [1 : b − 3], if the bounds on the probability
of error of the remaining terms are satisfied. Applying 1) the
union of events bound, the independence of the codebooks,
the law of large numbers, the conditional typicality lemma [27,
Sec. 2.5], the joint typicality lemma [27, Sec. 2.5.1], the pack-
ing lemma [27, Lem. 3.1, Sec 3.2], the covering lemma [27,
Lem. 3.3, Sec 3.7], the lemma 11.1 [27, Sec. 11.3.1], the
chain rule, and the Fourier-Motzkin elimination procedure [27,
Appx. D] on (14)-(22), (25)-(29), 2) the union of events bound,
the independence of the codebooks, the law of large numbers,
and the packing lemma on (33), and (34), 3) combining
the resulting bounds, 4) taking the limit over n and b, and
5) maximizing over the six sub-strategies gives the result in
Prop. 1.

APPENDIX B
SPECIAL CASE: 3PC

The bounds of STG(2,3)
1,2,3 can be specialized to STG(2)

1,2,3 by
restricting Ỹ3 to be independent of (X3, Y3) and setting X3 to
be a function of a constant. Thus, the probability distribution

p(u)p(x1|u)p(x|x1)p(x2|u)p(x3)p(ỹ2|x2, y2)p(ỹ3|x3, y3)

becomes

p(u)p(x1|u)p(x|x1)p(x2|u)p(x3)p(ỹ2|x2, y2).

After 1) applying the simplification, 2) removing the bounds
that appear twice and using the chain rule, and 3) noticing
that in the remaining bounds, two bounds are the average of
respectively two other ones and thus are never active, since
∀a, b ∈ R+, 1

2 (a + b) ≥ min{a, b}, one can get the bounds
in Coro. 1.

APPENDIX C
SPECIAL CASE: 3FC IN THE GAUSSIAN CASE

The bounds of STG(2,3)
1,2,3 can be specialized to STG(2,3)Gauss

1,2,3

as follows. Assume that U ∼ CN (0, σ2
U ), with σ2

U =
E[UU∗] = PρU , 0 ≤ ρU ≤ 1. Assume that X1 =
X ′1 +A1U ∼ CN (0, σ2

X1
), with σ2

X1
= E[X1X

∗
1 ] = P (ρX′1 +

ρUρ
2
A1

), 0 ≤ ρX′1 ≤ 1, 0 ≤ ρA1
≤ 1, θA1

∈ [0, 2π), with
correlation coefficient QU,X1

= E[UX∗1 ] = PρUρA1
e−jθA1 .

Assume that X = X ′ + A2X1 ∼ CN (0, σ2
X), with σ2

X =
E[XX∗] = P (ρX′ + ρX′1ρ

2
A2

+ ρUρ
2
A1
ρ2
A2

), 0 ≤ ρX′ ≤
1, 0 ≤ ρA2

≤ 1, θA2
∈ [0, 2π), with correlation coefficients

QU,X = E[UX∗] = PρUρA1
ρA2

e−j(θA1
+θA2

), and QX,X1
=

E[XX∗1 ] = P (ρX′1ρA2
+ρUρ

2
A1
ρA2

)ejθA2 . Assume that X2 =
X ′2 +B1U ∼ CN (0, σ2

X2
), with σ2

X2
= E[X2X

∗
2 ] = P (ρX′2 +

ρUρ
2
B1

), 0 ≤ ρX′2 ≤ 1, 0 ≤ ρB1
≤ 1, θB1

∈ [0, 2π), with
correlation coefficients QU,X2 = E[UX∗2 ] = PρUρB1e

−jθB1 ,
QX,X2 = E[XX∗2 ] = PρUρA1ρA2ρB1e

j(θA1
+θA2

−θB1
), and

QX1,X2
= E[X1X

∗
2 ] = PρUρA1

ρB1
ej(θA1

−θB1
). Assume that

X3 ∼ CN (0, σ2
X3

), with σ2
X3

= E[X3X
∗
3 ] = PρX3

, 0 ≤
ρX3

≤ 1. The AWGN Zk ∼ CN (0, 1), k ∈ [1 : 3], are

i.i.d. across resources and receivers. The quantization random
variables are defined as Ỹk = Yk+Z̃k, Z̃k ∼ CN (0,∆k), k ∈
[2 : 3], and the Z̃k are independent of everything else. Giving
the covariance matrix in (35), which is positive semi-definite,
and Σ

(2,3)
1,2,3 � P I5, thus all the diagonal elements are smaller

or equal to P . The latter constraint is used for comparison
with the other schemes, however, it can be noticed that this is
stricter than Tr(Σ

(2,3)
1,2,3) ≤ 5P . Note that diagonal elements of

Σ
(2,3)
1,2,3 modulate the power allocation dedicated to each layer

of the superposition of CFs and DFs. It can be noticed that
without loss of generality, U and X3 do not require a phase
under this setting. Applying the log det(·) on the bounds leads
to the expression presented in Coro. 2. In a similar manner,
one can derive the STG(2)Gauss

1,2,3 for the 3PC scheme.

APPENDIX D
SPECIAL CASE: 2RC

The bounds of STG(2)
1,2,3 can be specialized to STG(2)

1,2 by
restricting Y3 to be independent of (U,X,X1, X2, X3), by not
requiring receiver 3 to decode the common message anymore,
and by setting U to be a function of a constant. Thus, the
probability distribution

p(u)p(x1|u)p(x|x1)p(x2|u)p(x3)p(ỹ2|x2, y2)

becomes

p(x, x1)p(x2)p(x3)p(ỹ2|x2, y2).

After applying the simplification, one can get the bounds
presented in [25], where there are further specialized to the
orthogonal case, the SISO Gaussian case and the MISO
Gaussian case.

APPENDIX E
SEQUENTIAL COORDINATION OF THE THREE-RECEIVER

COOPERATION SCHEME

The three-receiver cooperation scheme in the Gaussian case
sequentially works as follows,
On medium Synchronize.
At receivers Estimate the main channel SNRk and the coop-

eration links SNRlk and SNRqk, k ∈ [1 : 3], l ∈ [1 :
3] \ {k}, q ∈ [1 : 3] \ {k, l}.

On medium Feed back this information to the transmitter.
At transmitter Compute the covariance matrix Σ

(k,q)
l,k,q and

the compression noise powers 0 ≤ ∆k and 0 ≤ ∆q , k ∈
[1 : 3], l ∈ [1 : 3] \ {k}, q ∈ [1 : 3] \ {k, l}, based on
the 3FC bound given in Coro. 2. Clustering analysis if
necessary.

On medium Signal this computed information to all re-
ceivers.

At nodes and on medium Execute the scheme for b blocks
according to the computed information. Each node knows
its role and parameters since the signaling. No further
feedback or signaling is required.

The sequential function description can be performed indiffer-
ently for the 3FC or 3PC schemes, where the computation at
the transmitter is changed accordingly. Moreover, note that the
coordination presents a low transmitted data requirement, since
it corresponds only to the feedback and signaling transitions.
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Σ
(2,3)
1,2,3

=


σ2
U QU,X QU,X1 QU,X2 0

Q∗U,X σ2
X QX,X1 QX,X2 0

Q∗U,X1
Q∗X,X1

σ2
X1

QX1,X2 0

Q∗U,X2
Q∗X,X2

Q∗X1,X2
σ2
X2

0

0 0 0 0 σ2
X3



=


PρU PρUρA1

ρA2
e
−j(θA1

+θA2
)

PρUρA1
e
−jθA1 PρUρB1

e
−jθB1 0

Q∗U,X P (ρX′+ρX′1
ρ2A2

+ρUρ
2
A1
ρ2A2

) P (ρX′1
ρA2

+ρUρ
2
A1
ρA2

)e
jθA2 PρUρA1

ρA2
ρB1

e
j(θA1

+θA2
−θB1

)
0

Q∗U,X1
Q∗X,X1

P (ρX′1
+ρUρ

2
A1

) PρUρA1
ρB1

e
j(θA1

−θB1
)

0

Q∗U,X2
Q∗X,X2

Q∗X1,X2
P (ρX′2

+ρUρ
2
B1

) 0

0 0 0 0 PρX3

 (35)
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